

THIS PAGE IS LEFT INTENTIONALLY BLANK

Silvertown Tunnel Preliminary Environmental Information Report Appendix 6.A: Model Verification

CONTE	NIS	
1	INTRODUCTION	

1.	INTRODUCTION	5
2.	RESIDUAL UNCERTAINTY	7
3.	AIR QUALITY MONITORING DATA	9
4.	VERIFICATION METHODOLOGY	11
5.	MODEL VERIFICATION OF PM10/PM2.5	29

THIS PAGE IS LEFT INTENTIONALLY BLANK

INTRODUCTION

- 1.1.1 The comparison of modelled concentrations with local monitored concentrations is a process termed 'verification'. Model verification identifies any discrepancies between modelled and measured concentrations, which can arise for a range of reasons. The following are examples of potential causes of such discrepancies:
 - estimates of background pollutant concentrations;
 - meteorological data uncertainties;
 - traffic data uncertainties;
 - emission factor uncertainties;
 - model input parameters, such as 'roughness length'; and
 - overall limitations of the ability of the dispersion model to model dispersion in a complex urban environment.
- 1.1.2 The verification process involves a review of the modelled pollutant concentrations against corresponding monitoring data to determine how well the air quality model has performed. Depending on the outcome it may be considered that the model has performed adequately and that there is no need to adjust any of the modelled results.
- 1.1.3 Alternatively the model may perform poorly¹ against the monitoring data, as a result there is a need to check all the input data to ensure that it is reasonable and accurately represented in the air quality modelling process. Where all input data, such as traffic data, emissions rates and background concentrations have been checked and considered reasonable, then the modelled results may require adjustment to best align with the monitoring data. This may be either be a single verification adjustment factor to be applied to the modelled concentrations across the study area or a range of different adjustment factors to account for different situations in the study area.

¹ The acceptable limits of model verification performance are set out in Defra's Local Air Quality Management Technical Guidance (2009)

THIS PAGE IS LEFT INTENTIONALLY BLANK

RESIDUAL UNCERTAINTY

- 2.1.1 Residual uncertainty may remain after systematic error or 'overall model accuracy' has been accounted for in the final predictions. Residual uncertainty may be considered synonymous with the 'residual inaccuracies' of the model predictions, i.e. how wide the scatter or residual variability of the predicted values compare with the monitored true value, once systematic error has been allowed for. The quantification of final model accuracy provides an estimate of how the final predictions may deviate from true (monitored) values at the same location over the same period.
- 2.1.2 Suitable local monitoring data for the purpose of verification is available for concentrations of NO₂ at the locations shown in Table 6A-3. This monitoring data has been used to validate the dispersion model prediction and obtain adjustment factors which can be applied to predictions of pollutant concentrations in the base and future years.

Model Performance

- 2.1.3 An evaluation of model performance has been undertaken to establish confidence in model results. LAQM.TG(09) (Defra, 2009) identifies a number of statistical procedures that are appropriate to evaluate model performance and assess the uncertainty. The statistical parameters used in this assessment are:
 - root mean square error (RMSE);
 - fractional bias (FB); and
 - correlation coefficient (CC).
- 2.1.4 A brief for explanation of each statistic is provided in Table 6A-1, and further details can be found in LAQM.TG(09) Box A3.7.

Table 6A-1Statistical Parameters used to estimate model performance

Statistical Parameter	Comments	Ideal value
RMSE	RMSE is used to define the average error or uncertainty of the model. The units of RMSE are the same as the quantities compared.	0.01
	If the RMSE values are higher than 25% of the objective being assessed, it is recommended that the model inputs and verification should be revisited in order to make improvements.	
	For example, if the model predictions are for the annual mean NO_2 objective of 40 $\mu g/m^3$, if an RMSE of 10 $\mu g/m^3$ or above is determined for a model it is advised to revisit the model parameters and model verification.	
	Ideally an RMSE within 10% of the air quality objective would be derived, which equates to 4 μg/m³ for the annual mean NO₂ objective.	
FB	It is used to identify if the model shows a systematic tendency to over or under predict.	0.00
	FB values vary between +2 and -2 and has an ideal value of zero. Negative values suggest a model over-prediction and positive values suggest a model under-prediction.	
СС	It is used to measure the linear relationship between predicted and observed data. A value of zero means no relationship and a value of 1 means absolute relationship.	1.00
	This statistic can be particularly useful when comparing a large number of model and observed data points.	

2.1.5 These parameters estimate how the model results agree or diverge from the observations. These calculations have been carried out prior to, and after, adjustment and provide information on the improvement of the model predictions as a result of the application of the verification adjustment factors.

3. AIR QUALITY MONITORING DATA

- 3.1.1 The air quality monitoring data collected as part of this assessment and detailed in the baseline section was reviewed to determine the suitability of each of the monitoring locations for inclusion into the model verification process. The criteria used to determine the suitability of the monitoring for inclusion into the verification exercise is outlined below:
 - within 50m of roads forming the air quality study area
 - monitoring from diffusion tubes for 2012 was used in preference to other years where there was greater than 75% data capture
 - where there was less than 75% data capture from the diffusion tubes in 2012 but a greater level of data capture (greater than 75%) in other years (2010,2011,2013) these results were taken in preference and annualised (using the relationship between annual mean concentrations at automatic roadside monitoring stations within the study area).
 - automatic monitoring data was used where there was greater than 90% data capture
 - monitoring was discounted where there was less than 75% data capture in 2012 and poor data capture in other years
 - monitoring was excluded from verification if major sources were missing from the traffic model that may influence monitored concentrations and therefore could not be included in the air quality modelling (such as large car parks, industrial stacks in close proximity etc).
 - sites where the location of the monitoring could not be confirmed to a satisfactory standard were omitted from the verification.
- 3.1.2 The monitoring sites excluded from the verification process not as a result of data capture are presented in Table 6A-2 along with the reason for exclusion. Diffusion tubes collocated at automatic analysers were also removed as the results from the automatic stations were used in preference.

Table 6A-2: Monitoring Sites Excluded from the Verification Process

Site	Reason for exclusion
THA52	Too far from road to be representative
BDI07	Coordinates unreliable – XY suggest that site is located inside a building

Site	Reason for exclusion
THA83	Not all sources represented – traffic model misses large scrapyard access and arm of junction.

4. VERIFICATION METHODOLOGY

- 4.1.1 The verification method following the process detailed in LAQM.TG(09). The initial verification was undertaken by comparing the modelled versus monitored Road NO_x. Road NO_x measured at the diffusion tubes were calculated using the latest Defra NO_x to NO₂ calculator (v4.1), because diffusion tubes only measure NO₂ and do not directly measure NO_x.
- 4.1.2 Concentrations of road NO_x recorded at automatic monitors was were calculated by subtracting background concentrations of NO_x (acquired from Defra background maps) from the total NO_x recorded at the automatic site.
- 4.1.3 Modelled PM₁₀ and PM_{2.5} were compared against monitoring data at the automatic sites to determine whether adjustment was required.
- 4.1.4 Following the removal of the monitoring locations with low data capture and locations which could not be described in the model a total of 115 tubes diffusion tube and automatic monitoring sites were used in the verification. The initial modelled versus monitored NO₂ and NO_x are presented in Table 6A-3.

Table 6A-3: Modelled versus Monitoring Initial Results 2012

Tube Id	X	Y	Data Owner	Monitoring Method	Monitored NO ₂ (μg/m³)	BG NO _x (µg/m³)	BG NO ₂ (µg/m³)	Md Total NO ₂ (μg/m³)	Mn V Md Total NO ₂ % Diff	Md Rd NO _x (μg/m³)	Mn Rd NO _x (μg/m³)	Mn v Md Rd NOx % Diff
RBG10	5402 00	1783 67	RBG	Automatic	71	45	28.8	52.9	-25%	61.8	166	-63%
HYD45	5398 31	1791 81	Scheme	Diffusion Tube	39.3	42.6	27.6	31.8	-19%	9.0	26.8	-66%
HYD46	5395 68	1787 65	Scheme	Diffusion Tube	44.4	45.5	29.0	36.3	-18%	16.3	36.8	-56%
HYD47	5397 32	1786 46	Scheme	Diffusion Tube	37.6	45.5	29.0	35.7	-5%	15.0	19.5	-23%
HYD48	5397 32	1785 85	Scheme	Diffusion Tube	37.9	45.5	29.0	33.2	-12%	9.2	20.3	-55%
HYD49	5397 75	1782 90	Scheme	Diffusion Tube	42.8	45.5	29.0	36.2	-15%	16.2	32.3	-50%
HYD51	5400 25	1782 91	Scheme	Diffusion Tube	53.4	45.0	28.8	38.5	-28%	22.2	63.4	-65%
HYD52	5403 37	1783 61	Scheme	Diffusion Tube	71.2	45.0	28.8	42.6	-40%	32.7	125.7	-74%

Tube Id	X	Y	Data Owner	Monitoring Method	Monitored NO ₂ (μg/m³)	BG NO _x (μg/m³)	BG NO ₂ (μg/m³)	Md Total NO ₂ (μg/m³)	Mn V Md Total NO ₂ % Diff	Md Rd NO _x (μg/m³)	Mn Rd NO _x (μg/m³)	Mn v Md Rd NOx % Diff
HYD53	5402 78	1782 75	Scheme	Diffusion Tube	53.4	45.0	28.8	41.6	-22%	29.9	63.1	-53%
GW36	5402 00	1783 67	RBG	Diffusion Tube	53.6	42.6	27.6	40.2	-25%	29.2	66.9	-56%
GW50	5398 31	1791 81	RBG	Diffusion Tube	73.0	45.0	28.8	50.6	-31%	54.9	132.7	-59%
GW51	5395 68	1787 65	RBG	Diffusion Tube	47.4	42.6	27.6	35.6	-25%	17.9	48.4	-63%
HYD17	5397 32	1786 46	Scheme	Diffusion Tube	50.8	48.2	30.8	39.0	-23%	18.8	50.4	-63%
GW42	5397 32	1785 85	RBG	Diffusion Tube	50.5	43.8	28.2	43.6	-14%	36.6	55.9	-35%
L1	5397 75	1782 90	LBL	Diffusion Tube	37.8	45.7	29.6	34.7	-8%	11.1	18.5	-40%
THA10	5400 25	1782 91	LBTH	Diffusion Tube	54.5	65.1	39.0	49.3	-10%	25.5	40.0	-36%
THA19	5403 37	1783 61	LBTH	Diffusion Tube	49.8	65.1	39.0	49.1	-1%	25.0	27.0	-7%
THA23	5402 78	1782 75	LBTH	Diffusion Tube	50.6	50.5	31.9	42.8	-15%	25.6	47.0	-46%
THA24	5393 20	1792 34	LBTH	Diffusion Tube	58.6	58.0	35.7	45.0	-23%	22.4	61.7	-64%

Tube Id	X	Y	Data Owner	Monitoring Method	Monitored NO ₂ (μg/m³)	BG NO _x (µg/m³)	BG NO ₂ (µg/m³)	Md Total NO ₂ (μg/m³)	Mn V Md Total NO ₂ % Diff	Md Rd NO _x (μg/m³)	Mn Rd NO _x (μg/m³)	Mn v Md Rd NOx % Diff
THA30	5402 03	1783 67	LBTH	Diffusion Tube	61.4	65.1	39.0	46.6	-24%	18.3	61.4	-70%
THA35	5396 38	1790 24	LBTH	Diffusion Tube	147.8	50.5	31.9	57.7	-61%	68.9	459.1	-85%
THA49	5407 37	1829 23	LBTH	Diffusion Tube	48.3	54.8	34.1	40.7	-16%	15.2	35.0	-57%
THA50	5383 17	1776 52	LBTH	Diffusion Tube	67.3	48.5	30.9	43.0	-36%	28.5	105.3	-73%
THA57	5361 11	1775 79	LBTH	Diffusion Tube	37.1	55.4	34.4	37.3	1%	6.4	6.0	8%
THA58	5342 08	1813 41	LBTH	Diffusion Tube	38.7	54.1	33.7	41.0	6%	16.9	11.4	48%
THA59	5348 03	1813 25	LBTH	Diffusion Tube	50.0	48.5	30.9	43.5	-13%	29.7	47.9	-38%
THA6	5355 98	1808 19	LBTH	Diffusion Tube	86.5	63.4	38.1	53.7	-38%	40.1	159.6	-75%
THA73	5351 74	1812 88	LBTH	Diffusion Tube	46.2	47.4	30.3	39.2	-15%	20.4	38.7	-47%
THA74	5342 37	1815 81	LBTH	Diffusion Tube	68.4	47.4	30.3	45.9	-33%	37.8	111.0	-66%
THA75	5359 90	1808 74	LBTH	Diffusion Tube	39.3	54.1	33.7	38.1	-3%	10.0	12.8	-21%
THA76	5369	1812	LBTH	Diffusion	67.5	55.4	34.4	42.7	-37%	19.3	95.7	-80%

Tube Id	X	Y	Data Owner	Monitoring Method	Monitored NO ₂ (μg/m³)	BG NO _x (μg/m³)	BG NO ₂ (μg/m³)	Md Total NO ₂ (μg/m³)	Mn V Md Total NO ₂ % Diff	Md Rd NO _x (μg/m³)	Mn Rd NO _x (μg/m³)	Mn v Md Rd NOx % Diff
	64	45		Tube								
THA86	5369 40	1809 92	LBTH	Diffusion Tube	45.2	47.4	30.3	41.7	-8%	26.7	35.9	-26%
THA9	5375 32	1812 90	LBTH	Diffusion Tube	50.5	63.4	38.1	50.2	-1%	30.2	31.1	-3%
THA2	5375 39	1806 88	LBTH	Automatic	62.0	52.4	32.9	51.9	-16%	48.2	98.6	-51%
THA80	5369 73	1806 28	LBTH	Diffusion Tube	60.3	49.9	31.6	41.0	-32%	22.0	78.6	-72%
THA81	5338 29	1809 29	LBTH	Diffusion Tube	103.2	54.8	34.1	50.8	-51%	42.0	245.6	-83%
THA84	5386 72	1807 39	LBTH	Diffusion Tube	53.6	52.4	32.9	46.9	-13%	34.0	53.4	-36%
HYD36	5382 71	1807 60	Scheme	Diffusion Tube	47.6	43.9	28.0	33.7	-29%	12.6	48.2	-74%
DTE	5376 61	1807 68	LBR	Diffusion Tube	48.6	42.9	27.6	39.6	-18%	27.8	52.0	-47%
WAF4	5379 42	1810 27	LBWF	Diffusion Tube	41.2	46.7	29.4	39.6	-4%	23.4	27.4	-15%
HYD21	5389 55	1809 25	Scheme	Diffusion Tube	43.2	44.2	28.7	33.9	-22%	11.5	34.3	-67%
HYD22	5339 99	1806 08	Scheme	Diffusion Tube	40.6	39.9	26.0	30.9	-24%	10.6	34.0	-69%

Tube Id	X	Y	Data Owner	Monitoring Method	Monitored NO ₂ (μg/m³)	BG NO _x (µg/m³)	BG NO ₂ (µg/m³)	Md Total NO ₂ (μg/m³)	Mn V Md Total NO ₂ % Diff	Md Rd NO _x (μg/m³)	Mn Rd NO _x (μg/m³)	Mn v Md Rd NOx % Diff
HYD25	5382 90	1814 52	Scheme	Diffusion Tube	41.3	42.5	27.7	33.0	-20%	11.5	31.6	-64%
HYD59	5375 81	1832 08	Scheme	Diffusion Tube	36.2	41.2	26.7	31.8	-12%	11.0	21.4	-48%
DT M	5379 03	1829 94	LBR	Diffusion Tube	77.3	40.1	26.1	36.7	-53%	23.9	158.1	-85%
THR14	5383 66	1811 80	TC	Diffusion Tube	68.0	32.1	21.8	33.9	-50%	26.6	131.7	-80%
THR26	5394 74	1878 56	TC	Diffusion Tube	40.1	33.3	22.6	30.9	-23%	17.9	40.3	-56%
THR45	5408 22	1883 71	TC	Diffusion Tube	40.7	32.1	21.8	28.2	-31%	13.5	43.5	-69%
HYD1	5390 25	1869 45	Scheme	Diffusion Tube	67.7	47.0	30.1	48.9	-28%	46.6	108.5	-57%
HYD2	5434 25	1839 13	Scheme	Diffusion Tube	49.3	47.0	30.1	39.9	-19%	22.5	47.7	-53%
HYD3	5426 49	1870 15	Scheme	Diffusion Tube	41.4	47.0	30.1	35.1	-15%	11.1	26.4	-58%
HYD15	5435 87	1852 59	Scheme	Diffusion Tube	48.5	45.4	29.2	42.3	-13%	30.8	47.6	-35%
HYD16	5415 56	1892 45	Scheme	Diffusion Tube	49.7	44.7	28.9	39.3	-21%	23.9	51.8	-54%
HYD26	5418	1881	Scheme	Diffusion	48.1	42.0	27.0	38.6	-20%	26.4	51.8	-49%

Tube Id	X	Y	Data Owner	Monitoring Method	Monitored NO ₂ (μg/m³)	BG NO _x (μg/m³)	BG NO ₂ (μg/m³)	Md Total NO ₂ (μg/m³)	Mn V Md Total NO ₂ % Diff	Md Rd NO _x (μg/m³)	Mn Rd NO _x (μg/m³)	Mn v Md Rd NOx % Diff
	80	70		Tube								
HYD30	5553 11	1794 17	Scheme	Diffusion Tube	40.0	36.8	24.2	31.8	-21%	16.6	36.6	-55%
HYD31	5563 14	1787 65	Scheme	Diffusion Tube	38.0	36.8	24.2	28.3	-25%	8.8	31.5	-72%
HYD32	5552 86	1795 01	Scheme	Diffusion Tube	39.4	32.1	21.8	26.4	-33%	9.6	40.4	-76%
BDI20	5402 95	1817 68	LBBD	Diffusion Tube	63.8	36.8	24.2	43.0	-33%	44.6	111.1	-60%
DA14	5403 02	1817 91	DBC	Diffusion Tube	60.0	34.2	23.1	52.4	-13%	71.2	94.8	-25%
DA20	5402 99	1818 41	DBC	Diffusion Tube	41.0	34.2	23.1	37.3	-9%	31.2	40.2	-22%
DA21	5414 45	1818 66	DBC	Diffusion Tube	35.0	34.2	23.1	33.4	-5%	22.0	25.7	-14%
DA22	5427 39	1821 19	DBC	Diffusion Tube	53.0	34.2	23.1	44.4	-16%	48.9	73.0	-33%
DA24	5456 03	1834 61	DBC	Diffusion Tube	35.0	32.6	22.2	32.9	-6%	22.7	27.6	-18%
DA44	5477 52	1835 29	DBC	Diffusion Tube	44.0	34.2	23.1	33.1	-25%	21.3	47.9	-56%
DA84	5477 42	1834 79	DBC	Diffusion Tube	58.0	34.2	23.1	48.5	-16%	60.0	88.4	-32%

Tube Id	X	Y	Data Owner	Monitoring Method	Monitored NO ₂ (μg/m³)	BG NO _x (µg/m³)	BG NO ₂ (µg/m³)	Md Total NO ₂ (μg/m³)	Mn V Md Total NO ₂ % Diff	Md Rd NO _x (μg/m³)	Mn Rd NO _x (μg/m³)	Mn v Md Rd NOx % Diff
THR10	5553 50	1798 94	LBTH	Diffusion Tube	52.9	36.0	24.0	38.8	-27%	32.7	70.7	-54%
DA50	5470 59	1835 97	DBC	Diffusion Tube	41.0	27.4	19.1	36.4	-11%	37.6	49.1	-23%
DA72	5554 84	1744 41	DBC	Diffusion Tube	38.0	32.8	22.5	29.3	-23%	14.1	34.2	-59%
DA81	5556 60	1748 63	DBC	Diffusion Tube	39.0	32.8	22.5	30.0	-23%	15.7	36.6	-57%
DA89	5554 97	1740 25	DBC	Diffusion Tube	38.2	27.4	19.1	32.0	-16%	27.3	42.1	-35%
DA90	5556 00	1740 30	DBC	Diffusion Tube	37.9	27.4	19.1	29.6	-22%	21.9	41.4	-47%
RBG4	5556 32	1735 58	RBG	Automatic	47.0	33.9	22.8	35.1	-25%	27.5	68.1	-60%
HYD63	5556 56	1740 53	Scheme	Diffusion Tube	39.5	27.4	19.1	32.1	-19%	28.1	46.7	-40%
HYD66	5555 74	1740 68	Scheme	Diffusion Tube	35.6	36.1	24.0	34.7	-3%	23.7	25.8	-8%
HYD69	5575 70	1777 89	Scheme	Diffusion Tube	37.4	36.1	24.0	32.3	-13%	18.1	30.1	-40%
HYD70	5537 83	1723 19	Scheme	Diffusion Tube	35.2	38.7	25.5	32.4	-8%	15.2	21.8	-30%
HYD71	5564	1721	Scheme	Diffusion	38.3	38.7	25.5	31.2	-19%	12.4	29.2	-58%

Tube Id	X	Y	Data Owner	Monitoring Method	Monitored NO ₂ (μg/m³)	BG NO _x (µg/m³)	BG NO ₂ (μg/m³)	Md Total NO ₂ (μg/m³)	Mn V Md Total NO ₂ % Diff	Md Rd NO _x (μg/m³)	Mn Rd NO _x (μg/m³)	Mn v Md Rd NOx % Diff
	33	24		Tube								
BEX1	5563 68	1723 44	LBB	Diffusion Tube	47.8	34.8	23.3	36.4	-24%	29.3	60.1	-51%
BEX16	5537 95	1722 59	LBB	Diffusion Tube	40.5	31.0	21.1	33.4	-18%	27.0	45.0	-40%
BEX24	5539 57	1722 75	LBB	Diffusion Tube	59.4	31.0	21.1	36.7	-38%	35.1	103.5	-66%
BEX3	5449 97	1750 98	LBB	Diffusion Tube	49.2	34.8	23.3	34.4	-30%	24.5	64.2	-62%
BEX41	5531 58	1725 62	LBB	Diffusion Tube	35.8	31.8	21.6	28.8	-20%	15.4	31.9	-52%
BEX41 4	5433 71	1750 56	LBB	Diffusion Tube	63.7	31.8	21.6	32.0	-50%	22.7	117.6	-81%
BEX41 5	5435 30	1751 96	LBB	Diffusion Tube	34.2	31.8	21.6	28.3	-17%	14.2	28.0	-49%
BEX41	5414 74	1754 15	LBB	Diffusion Tube	35.0	31.8	21.6	26.4	-25%	10.2	29.9	-66%
BEX41	5417 18	1752 96	LBB	Diffusion Tube	45.8	31.8	21.6	30.0	-34%	18.2	58.5	-69%
BEX41 8	5450 00.1	1750 98	LBB	Diffusion Tube	30.7	31.8	21.6	25.4	-17%	8.1	19.8	-59%
GW10 3	5476 76	1743 28	RBG	Diffusion Tube	51.0	39.9	26.1	39.4	-23%	30.5	62.7	-51%

Tube Id	х	Y	Data Owner	Monitoring Method	Monitored NO ₂ (μg/m³)	BG NO _x (µg/m³)	BG NO ₂ (µg/m³)	Md Total NO ₂ (μg/m³)	Mn V Md Total NO ₂ % Diff	Md Rd NO _x (μg/m³)	Mn Rd NO _x (μg/m³)	Mn v Md Rd NOx % Diff
GW23	5476 08	1743 44	RBG	Diffusion Tube	40.6	45.0	28.9	36.6	-10%	17.4	27.1	-36%
GW32	5450 80	1750 67	RBG	Diffusion Tube	48.7	45.0	28.9	42.2	-13%	31.3	48.9	-36%
GW55	5462 53	1747 74	RBG	Diffusion Tube	55.9	34.8	23.3	37.1	-34%	31.1	85.5	-64%
RBG9	5462 60	1747 30	RBG	Automatic	44.0	38.7	25.5	33.6	-24%	18.0	58.3	-69%
GW10 5	5462 28	1746 13	RBG	Diffusion Tube	53.6	35.9	24.0	39.2	-27%	34.9	76.5	-54%
GW38	5461 73	1744 73	RBG	Diffusion Tube	36.2	38.7	25.5	31.2	-14%	12.3	24.1	-49%
GW54	5463 13	1744 93	RBG	Diffusion Tube	61.2	38.7	25.5	36.4	-40%	24.7	98.1	-75%
GW59	5463 86	1744 37	RBG	Diffusion Tube	42.9	38.7	25.5	33.6	-22%	18.0	41.2	-56%
HYD6	5409 35	1765 75	Scheme	Diffusion Tube	39.9	45.5	29.2	33.1	-17%	8.6	24.7	-65%
HYD7	5404 20	1777 06	Scheme	Diffusion Tube	40.1	45.5	29.2	32.3	-20%	6.7	25.2	-74%
HYD8	5406 61	1772 27	Scheme	Diffusion Tube	37.6	45.5	29.2	31.0	-18%	3.8	19.0	-80%
HYD11	5450	1750	Scheme	Diffusion	38.0	45.4	29.2	33.4	-12%	9.2	19.8	-54%

Tube Id	X	Y	Data Owner	Monitoring Method	Monitored NO ₂ (μg/m³)	BG NO _x (μg/m³)	BG NO ₂ (μg/m³)	Md Total NO ₂ (μg/m³)	Mn V Md Total NO ₂ % Diff	Md Rd NO _x (μg/m³)	Mn Rd NO _x (μg/m³)	Mn v Md Rd NOx % Diff
	05	97		Tube								
HYD13	5418 85	1750 16	Scheme	Diffusion Tube	34.3	47.9	30.2	32.9	-4%	6.0	9.0	-34%
HYD14	5411 43	1742 94	Scheme	Diffusion Tube	34.5	54.9	33.6	35.4	3%	4.1	2.1	97%
HYD19	5418 85	1750 45	Scheme	Diffusion Tube	41.2	48.9	30.8	33.6	-19%	6.1	24.3	-75%
HYD20	5419 15	1750 39	Scheme	Diffusion Tube	31.7	44.0	28.4	30.5	-4%	4.5	7.3	-38%
HYD27	5418 85	1750 16	Scheme	Diffusion Tube	39.4	45.5	29.2	32.3	-18%	6.7	23.4	-71%
HYD39	5401 80	1803 71	Scheme	Diffusion Tube	34.2	38.6	25.3	28.3	-17%	6.3	19.6	-68%
HYD40	5406 41	1801 48	Scheme	Diffusion Tube	38.6	54.9	33.6	35.2	-9%	3.7	11.5	-68%
HYD56	5406 36	1801 92	Scheme	Diffusion Tube	36.2	46.8	29.5	35.0	-3%	12.0	14.9	-19%
GW29	5410 60	1814 91	RBG	Diffusion Tube	64.0	45.3	28.8	39.4	-38%	24.2	98.5	-75%
GW49	5436 94	1808 99	RBG	Diffusion Tube	46.6	38.6	25.3	38.4	-18%	29.9	51.8	-42%
GW52	5429 37	1809 12	RBG	Diffusion Tube	43.9	46.8	29.5	41.7	-5%	28.3	34.1	-17%

Tube Id	Х	Y	Data Owner	Monitoring Method	Monitored NO ₂ (μg/m³)	BG NO _x (µg/m³)	BG NO ₂ (μg/m³)	Md Total NO ₂ (μg/m³)	Mn V Md Total NO ₂ % Diff	Md Rd NO _x (μg/m³)	Mn Rd NO _x (μg/m³)	Mn v Md Rd NOx % Diff
THA44	5419 39	1801 94	LBTH	Diffusion Tube	53.0	56.2	34.8	41.8	-21%	16.2	46.4	-65%
THA53	5437 48	1813 09	LBTH	Diffusion Tube	60.1	49.9	31.6	42.6	-29%	25.9	77.6	-67%
THA79	5402 60	1803 29	LBTH	Diffusion Tube	48.1	49.9	31.6	34.8	-28%	7.0	40.8	-83%

4.1.5 The modelled versus monitored annual mean NO₂ concentrations were plotted on a scatter graph as presented on Figure 6A-1.

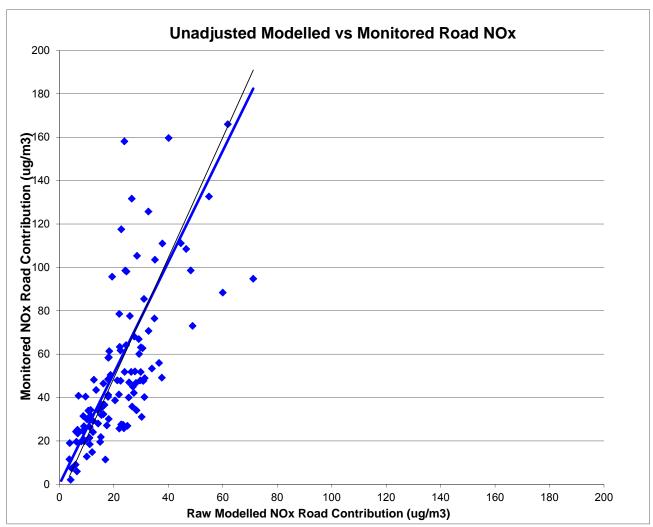
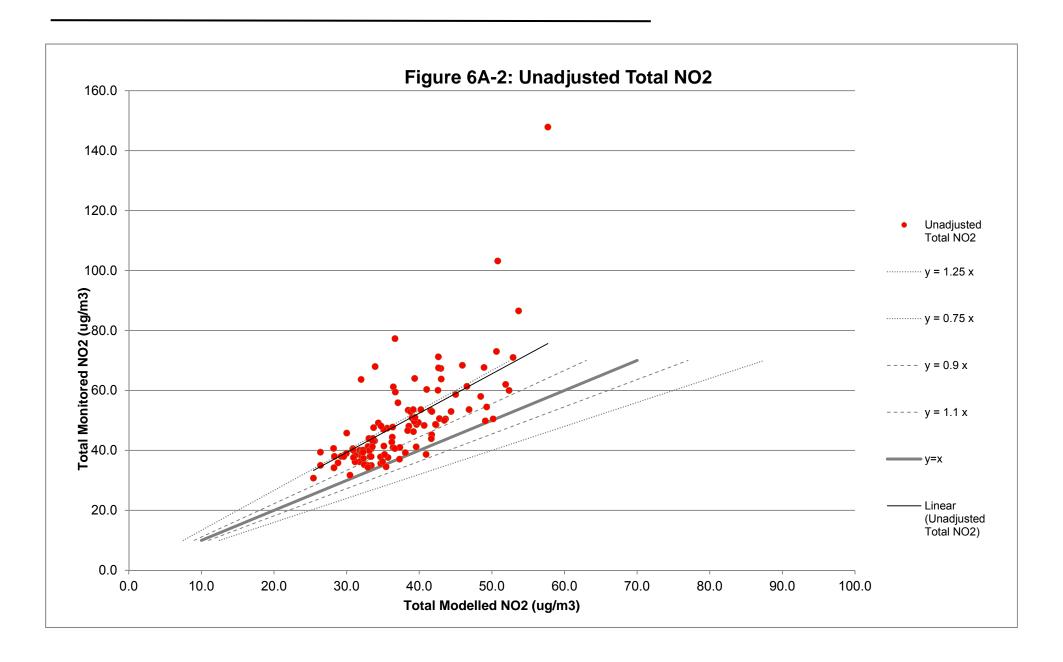


Figure 6A-1: Modelled Versus Monitored Road NOx


- 4.1.6 Figure 6A-1 illustrates that the modelled tends to under predicts against the monitored concentrations. Table 6A-4 shows that the model is performing poorly with only 72% of the modelled NO₂ being within 25% of the modelled.
- 4.1.7 The verification of such a large model is not simple as a result of the complexity of the area. A number of verification tests were therefore carried out to determine the best approach these included the following;
 - Basic verification –Factor applied to all motorways and all A-roads separately

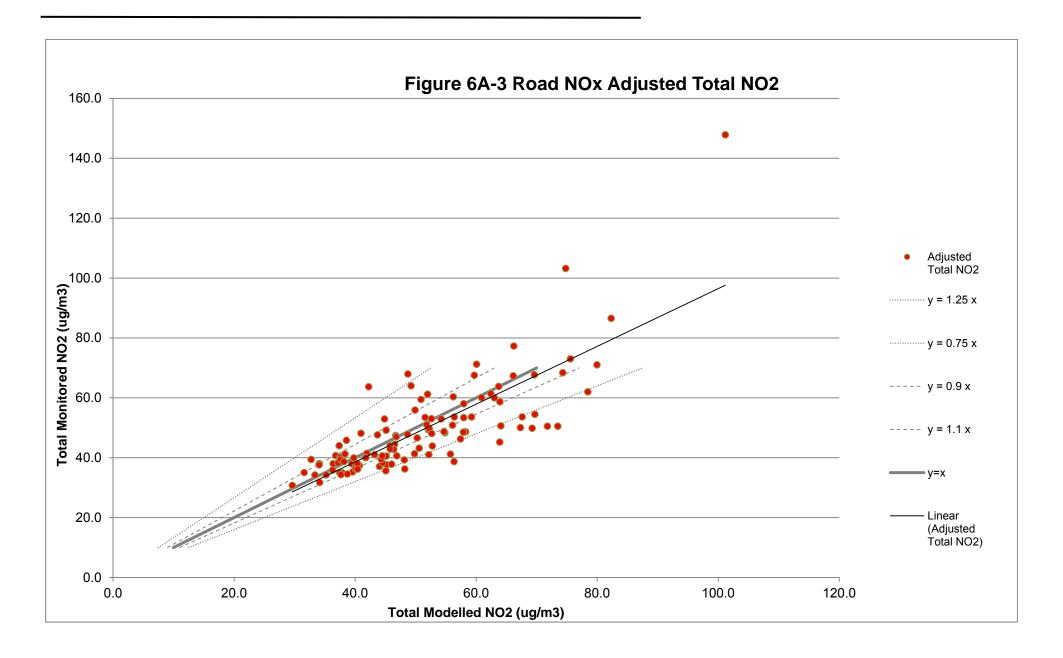

- Overall Factor one single verification factor for all receptors
- Detailed Verification Splitting the model into 11 Verification Zones following review of the modelled versus monitoring (including splitting specific Sections of the road network into different zones).
- 4.1.8 Following a review of the verification the detailed verification was judged to ensure that the model performed well. The road NO_x verification factors for each of the modelled zones are presented in Table 6A-4.

Table 6A-4: Road NOx Verification Factors for Each Model Verification Zone.

	Verification Factor	Number of Monitoring sites used	RMSE
Greenwich Peninsular	2.60	12	5.2
Central London	3.54	21	16.1
East Cross Route	2.96	7	15.2
Bromley-by-bow	3.11	3	4.2
North Circular	4.80	5	9.3
A13	2.49	13	6.7
M25 Dartford	1.47	8	4.1
A2	2.14	25	6.5
South Circular	2.73	5	5.4
Silvertown	2.83	11	2.6
Woolwich Road	2.09	4	9.0

- 4.1.9 When the 11 verification factors in Table 6A-4 were applied to the raw modelled results, total annual mean NO₂ concentrations at 84% of the modelled sites were within 25% of monitored NO₂ concentrations as summarised in Figure 6A-3.
- 4.1.10 Figures 6A-3 demonstrates that the once adjusted for road NO_x , total modelled NO_2 concentrations are closer to monitored total NO_2 concentrations, than the unadjusted total modelled NO_2 in Figure 6.

Table 6A-5 Model performance Statistics

Parameter	No Adjustment	NO _x Contribution Adjustment
RMSE	16.0	9.4
FB	0.3	0.0
CC	0.73	0.80

4.1.11 The model performance statistics show that the uncertainty in the predictions of the total NO_2 using the unadjusted model is large as the RMSE is 16.0 μ g/m³. Additionally, the model had a tendency to underpredict actual concentrations because the FB is greater than zero. Adjustment of model predictions is therefore required to achieve acceptable model performance. With the application of NOx roads contribution adjustment, the RMSE is reduced from 16.0 μ g/m³ to 9.4 μ g/m³, and the model doesn't under or over predict actual concentrations because the FB is zero.

THIS PAGE IS LEFT INTENTIONALLY BLANK

5. MODEL VERIFICATION OF PM10/PM2.5

5.1.1 The modelled versus monitored concentration for PM_{10} are presented in Table 6A-6.

Table 6A-6 Modelled versus Monitored PM10 2012

Site	X	Y	Monitored total PM ₁₀ (μg/m³)	Modelled total PM ₁₀ (μg/m³)	Percentage Difference
Burrage Grove (GR10/GN0)	544084	178881	27	22.4	-17%
Westhorne Avenue (GR9)	541879	175016	20	23.5	18%
RB4 Gardener Close, Wanstead	540810	188370	20	25.2	26%
Woolwich Flyover (GR8)	540200	178367	33	26.6	-19%
Tower Hamlets Blackwall	538290	181452	26	28.1	8%
Belvedere West FDMS (BQ8)	548259	179473	16	19.5	22%
Blackheath Hill (GR7)	538141	176710	28	22.7	-19%
Falconwood (GB6)	544997	175098	26	22.9	-12%
Trafalgar Road (GR5)	538960	177954	23	22.9	-1%
CT3 - John Cass School	533475	181179	26	26.2	1%

5.1.2 The model both under and over predicts at the various monitoring sites.
All the modelled concentrations are within 25% of the monitored concentrations with the exception of Woolwich Flyover. The overall factor for the modelled versus monitored concentrations was 0.96 and as a result the modelled results were not adjusted.

Table 6A-7 Modelled versus Monitored PM2.5 2012

Site	Х	Υ	Monitored PM _{2.5} (μg/m³)	Modelled PM _{2.5} (μg/m³)	Percentage Difference
Burrage Grove (GR10/GN0)	544084	178881	18	15.5	-14%
Westhorne Avenue (GR9)	541879	175016	16	16.1	1%

Site	X	Υ	Monitored PM _{2.5} (μg/m³)	Modelled PM _{2.5} (μg/m³)	Percentage Difference
RB4 Gardener Close, Wanstead	540810	188370	15	17.1	14%
Woolwich Flyover (GR8)	540200	178367	15	18.2	21%
Tower Hamlets Blackwall	538290	181452	15	19.0	27%
Belvedere West FDMS (BQ8)	548259	179473	9	13.8	53%

5.1.3 The modelled versus monitored $PM_{2.5}$ concentrations were generally over predicted, the results of the modelling were therefore not adjusted.