A14.7 – NM Rothschild Bank (Ground Investigation) (Norwest Holst Soil Engineering Ltd)

REPORT QUALITY ASSURANCE SHEET Title: **REPORT ON A GROUND INVESTIGATION** AT NM ROTHSCHILD BANK LONDON EC4N **Description:** Written By: **Checked By:** Report Date: **Approved By:** Status: Draft 20/11/2007 J.T. Williams Factual H. Sydney D.G. Harman Final H. Sydney J. T. Williams Factual 23/11/2007 D.G. Harman **Distribution: Arup Geotechnics** :Internal Copy The report is not to be used for contractual or engineering purposes unless this sheet is signed where indicated by both the originator of the report and the approver, and the report is designated "Final" on this report quality assurance sheet. Opinions and interpretations expressed in the report are outside the scope of UKAS accreditation. This report has been prepared for the sole internal use and reliance of the named Employer. This report should not be relied upon or transferred to any other parties without the express written authorisation of NHSED. If an unauthorised third party comes into possession of the report they rely on it at their peril and NHSED owes them no duty of care and skill. Issue Date 02/01/2007 Report Version No. SI FR 1.03

GROUND INVESTIGATION: NM ROTHSCHILD BANK

REPORT CONTENTS

1.0	INTRODUCTION	4	
2.0	PURPOSE, SCOPE AND REPORT FORMAT	4	
2.2	Purpose Scope of Work Report Format	4	
3.0	DESK STUDY INFORMATION	5	
3.2	Scope of Study Site Location and Description Geology	5	
	FIELDWORK		
4.2 4.3	Scope of Fieldwork Enabling Works Cable Percussion Boreholes Trial Pits	5 6	
	Survey Installations / Instrumentation		
	Gas and Groundwater Monitoring		
5.0	LABORATORY TESTING	7	
5.2	Scope of Testing Geotechnical Soils Testing Contamination Testing	7	
6.0	0 RESULTS OF THE INVESTIGATION		
6.2 6.3 6.4 6.5	Scope of Commentary Made Ground River Terrace Deposits London Clay Formation Lambeth Group Groundwater	8 8 9 9	
	DRT REFERENCES		
	OF TABLES		
Tabl Tabl Tabl	e 2 Groundwater Level Readings for Exploratory Hole Installations Section E	3	
LIST	OF FIGURES		
Figu Figu			

GROUND INVESTIGATION: NM ROTHSCHILD BANK

REPORT CONTENTS (continued)

SUPPORTING FACTUAL DATA

SECTION A: NOTES ON FIELDWORK, LOGGING AND LABORATORY TESTING

- Notes on Fieldwork Procedures
- Terminology used in Soil Descriptions
- Terminology used in the Description of Made Ground
- Assessment of Aggressive Ground and Groundwater Conditions

SECTION B: EXPLORATORY HOLE RECORDS AND FIELD DATA

- Exploratory Hole Legend and Notation Sheet
- Cable Percussion and Rotary Drilling Records
- Inspection Pit/ Trial Pit/ Trial Trench records
- Groundwater / Gas Monitoring / Sampling Results

SECTION C: LABORATORY TEST RESULTS

- Laboratory Test Data Key Sheet
- Laboratory Test Summary Sheets (Soils)
- Laboratory Test Data Sheets (Soils)
- Contamination Test Sheets

SECTION D: SITE PLANS

- Site Location Plan
- Exploratory Hole Location Plan

SECTION E: PHOTOGRAPHS

• Trial Pit Photographs

1.0 INTRODUCTION

In August 2007 Norwest Holst Limited - Soil Engineering Division (NHSED) were instructed by Arup Geotechnics (The Engineer) acting for and on behalf of Stanhope Plc (The Employer) to carry out a ground investigation at N. M. Rothschild and Sons (NMR) Bank, in the City of London for the proposed development of the site. It is understood that it is proposed to replace the existing buildings with a fifteen storey building with two basement levels which are to be deeper than the existing ones below the present site. The investigation comprised the formation of one cable percussion borehole together with one trial pit.

This factual report represents the results of the fieldwork and laboratory testing undertaken together with information on the ground and groundwater conditions encountered. The fieldwork was carried out in two phases; the first between 25th and 27th August 2007, and the second on 15th October 2007.

2.0 PURPOSE, SCOPE AND REPORT FORMAT

2.1 Purpose

The purpose of this investigation was to determine the subsurface ground and groundwater conditions at the site of the proposed re-development. This information was to be obtained from a combination of intrusive investigation techniques and laboratory testing.

2.2 Scope of Work

The brief for this factual report comprised the following items:

- 1. To form one exploratory hole on site.
- 2. To log and sample one trial pit on site.
- 3. To install gas and ground water monitoring instruments.
- 4. To monitor on site installations.
- 5. To undertake laboratory tests on samples recovered from exploratory holes.

The sources of information used in the compilation of this report are detailed in the list of references on page 10.

2.3 Report Format

This report is presented in the following format:

Factual information comprising: -

- Description of fieldwork
- Exploratory hole logs
- Laboratory test results
- Maps and plans
- Photographs of the trial pit

3.0 DESK STUDY INFORMATION

3.1 Scope of Study

A formal comprehensive desk study was not requested by the Engineer for this investigation. The following sections however provide general details of site location and description and site geology as ascertained from published maps.

3.2 Site Location and Description

The site is located at New Court and Nos 1 to 10 St Swithin's Lane, City of London, EC4N, (approximate National Grid Reference TQ 327 810). The existing building is currently owned and occupied by the investment bank, N. M. Rothschild and Sons.

At the time of the investigation the NMR Bank was bounded by The Wallbrook development to the south of the site (under construction at the time of the investigation); by 8-10 Mansion House Place, adjacent to the northern and western site boundary, (used by the British Arab Commercial Bank at the time of the investigation); by The Wallbrook Club, adjacent to the western boundary of New Court and by St. Swithin's Lane, adjacent to the eastern site boundary.

Ground levels varied around the perimeter of the site between approximately 14.0m OD at St Swithin's Lane to 10.0m OD at Bond Court, with a slight downward gradient proceeding eastwards from the corner of Mansion House Place and St Swithin's Lane. The area of open space between New Court and St Stephen's Church was generally level.

The location of the site is indicated on Figure 1 in Section D of this report.

3.3 Geology

From the available information on the 1:50,000 scale Geological Survey map of the area (Sheet 256: 1993, Solid and Drift edition for North London) the site is shown to be underlain by River Terrace Deposits of Taplow Gravel and locally by alluvial drift deposits. These in turn overlie the London Clay Formation of Eocene age and at greater depth the Lambeth Group of Palaeocene age.

4.0 FIELDWORK

4.1 Scope of Fieldwork

The scope of the fieldwork was specified by the Engineer and was undertaken in general accordance with BS 5930: 1999. In accordance with the specification and drawings provided by the Engineer, NHSED were required to survey the exploratory hole and to undertake the testing and sampling regime. One cable percussion borehole was formed by NHSED to a depth of 52.30m together with one trial pit formed by McGees (acting as subcontractors to Arup Geotechnics) to a depth of 2.03m. The exploratory hole locations are shown on the site plan presented in Section D of this report.

4.2 Enabling Works

Prior to the first phase of the work, i.e. cable percussion borehole, McGees were responsible for locating the borehole position in the basement and coring upwards between the beams of the concrete waffle ground slab. McGees then cored the basement slab vertically below

Project No: F15001	NM ROTHSCHILD BANK
Document No. F01	LONDON EC4N

the first hole and installed props below the beams of the concrete waffle slab. McGees were also responsible for the reinstatement of the cored hole in the concrete waffle slab on completion of the borehole.

Prior to the second phase of the works, i.e. sampling from the trial pit, McGees were responsible for excavating the trial pit located in the basement. McGees formed the pit by "stitch drilling" around the perimeter using a concrete coring rig, followed by breaking out the concrete and then hand excavation of the underlying River Terrace Deposits. Following logging and sampling by a NHSED Engineering Geologist the pit was backfilled and reinstated by McGees.

4.3 Cable Percussion Boreholes

One borehole designated BH01 was formed to a depth of 52.3m below existing road level (i.e. to -37.91m OD) using conventional light cable percussion techniques utilising 200mm diameter temporary steel casings. The borehole was formed in order to obtain samples for laboratory testing, to provide geotechnical information for foundation design and to locate the base of the London Clay. The borehole was also used for the installation of a standpipe piezometer.

102mm nominal diameter open tube samples (U100) were obtained at regular intervals throughout the boring operations where suitable cohesive materials were encountered. These were sealed with wax to prevent moisture loss and were transported to the Leeds laboratory of NHSED.

In the River Terrace Deposits and alternating with the open tube samples, Standard Penetration Tests were carried out using either a split spoon sampler or a solid 60° cone. The results of these tests are given as a Standard Penetration "N" value or as a blow count for a given penetration at the appropriate position on the borehole logs, where the use of either the sampler or cone is also recorded.

Representative disturbed samples of all materials encountered were obtained and these were placed in sealed containers for transport to the laboratory.

The samples recovered from the borehole were described by an Engineering Geologist, in accordance with the terminology presented in Section A of this report. A detailed description of all strata encountered, groundwater conditions and the position and type of samples taken are included on the borehole log presented in Section B of this report.

4.5 Trial Pits

As described in Section 4.2 a single trial pit, designated TP03, was excavated by hand by McGees to a depth of 2.03m. This trial pit was located in the basement to provide a reasonable indication of base of the existing foundation and the depth to the top of the River Terrace Deposits.

The trial pit was shored by McGees and was logged by a NHSED Engineering Geologist. The Engineering Geologist provided a detailed description of the ground conditions encountered in the pit and also obtained soil samples for geotechnical and contamination analysis. The strata encountered in the trial pit are described on the trial pit log presented in Section B of this report and the location of the trial pit is indicated on the site plan presented in Section D.

4.6 Survey

The coordinates and elevation of the borehole were determined by Wellden Land Surveys, acting as sub-contractors to NHSED. The coordinates and elevation were established using Leica Total Station Equipment and are based on survey stations indicated on plans supplied by Plowman Craven & Associates. The coordinates and elevation are given on the borehole log.

4.7 Installations / Instrumentation

A slotted 50mm diameter UPVC tube was installed in borehole BH01 at the base of the River Terrace Deposits, at an elevation of 4.69m OD. This tubing was slotted from the base up to an elevation of 7.69m OD with the slotted section being surrounded by pea gravel and the upper 0.50m being surrounded by a bentonite seal. A metal stopcock cover was concreted into place at basement level and a plastic cap with a gas valve was placed onto the tube to facilitate long-term groundwater and gas monitoring. A schematic of the installation is shown on the borehole log.

4.8 Gas and Groundwater Monitoring

In accordance with the Engineer's instruction monitoring of gas concentrations and groundwater levels in BH01 was carried out at weekly intervals for four weeks after completion of the site works. Monitoring for methane, carbon dioxide, and oxygen gases was carried out using a Geotechnical Instruments GA2000 gas analyser. The results are presented in Section B of this report.

5.0 LABORATORY TESTING

5.1 Scope of Testing

All geotechnical (soils) and chemical (contamination) testing was scheduled by the Engineer. The scope of the testing was required to enable comments regarding foundation design to be made and for potential site contamination levels to be established.

5.2 Geotechnical Soils Testing

The programme of laboratory testing was carried out in accordance with BS1377 (1990). The following testing was carried out at the Leeds laboratory of NHSED, which is registered as UKAS Testing laboratory No 1265.

The tests listed below were carried out and the results are given on the summary sheets with individual test plots presented in Section C of this report.

B.S. CLAUSE No	DESCRIPTION
Part 2: 3	Moisture Content
Part 2: 4 & 5	Atterberg Limits
Part 2: 9	Particle Size Distribution
Part 7: 8	Undrained Triaxial Compression with single stage Loading

In addition chemical (sulfate and pH) testing was undertaken by ECõS Environmental of Bradford which is registered as UKAS testing laboratory 0618. Testing was undertaken in order to assess concrete requirements from BRE Special Digest No 1. Samples were prepared in general accordance with BS 1377, although final analysis of total sulfate was performed

using ICP and aqueous extract using Ion Chromatography.

5.3 Contamination Testing

A programme of contamination testing was scheduled by the Engineer. A total of two soil samples were sent to ECõS Environmental of Bradford, which is registered as UKAS Testing laboratory No. 0618.

The results of the contamination testing are presented in Section	C of this report.
---	-------------------

METALS AND SEMI METALS	ORGANICS AND OTHERS
Arsenic Beryllium Cadmium Chromium (total) Copper Lead Mercury Nickel Selenium Vanadium Zinc	Acidity Asbestos BTEX (by GCMS) Cyanide (total) PAH (16 speciated) PCB Phenols (total) Total Organic Carbon TPH

In addition one soil sample was tested according to BSEN 12457-3:2000, using one stage preparation batch test at 10l/kg, to screen the material for compliance with waste acceptance criteria.

6.0 RESULTS OF THE INVESTIGATION

6.1 Scope of Commentary

The results of this investigation appear to broadly concur with the published geology summarised in Section 3.3 of this report. The following sections are only intended to provide a summary of the ground conditions encountered during this investigation whilst the logs presented in Section B of this report give a detailed account of all the strata observed.

6.2 Made Ground

In the borehole, BH01, concrete was present from road level to the top of the basement car park at an elevation of 13.89m OD. The floor of the basement slab of the car park was encountered at 11.09m OD and extended to an elevation of 8.89m OD. The basement is shown as a void on the borehole log. In the trial pit (TP03) reinforced concrete with 30mm and 15mm reinforcing bar extended to a depth of 1.66m.

6.3 River Terrace Deposits

Underlying the concrete of the basement floor slab, River Terrace Deposits (RTD) were encountered to an elevation of 4.84m OD. This deposit comprised very dense, very sandy flint gravel. In the trial pit, TPO3, RTD were encountered beneath the reinforced concrete and proven to the base of the pit at 2.03m.

Project No: F15001	NM ROTHSCHILD BANK
Document No. F01	LONDON EC4N

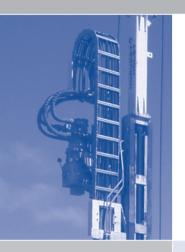
6.4 London Clay Formation

Underlying the River Terrace Deposits, London Clay was encountered in BH01 to an elevation of -36.11m OD. This deposit comprised firm becoming very stiff with depth, brownish grey clay, which was locally sandy. Pockets of selenite crystals and claystone bands were also noted.

6.5 Lambeth Group

Below the London Clay Formation soils of the Lambeth Group were encountered. This deposit comprised bands of multicoloured sandy clay and greyish brown fine sand, which were proven to the base of the borehole at -37.91m OD.

6.6 Groundwater


Groundwater was encountered in BH01 at an elevation of -36.61m OD. A summary of groundwater inflows into the borehole is given in Table 1 in Section B, whilst the log presented in Section B of this report provides full details of groundwater information.

For and on behalf of Norwest Holst Limited - Soil Engineering Division

H. Sydney Assistant Reports Engineer J. T. Williams Principal Geotechnical Engineer

REPORT REFERENCES

- BRE Special Digest 1: (2005): Concrete in Aggressive Ground. BRE Construction Division.
- BGS Sheet 256: (1993): 1:50,000 scale Solid and Drift edition for North London. British Geological Survey.
- BS 5930: (1999): Code of Practice for Site Investigation. British Standards Institution.
- BS 1377: (1990): Parts 1 to 9: Methods of Test for Soils For Civil Engineering Purposes. British Standards Institution.

SUPPORTING FACTUAL DATA SECTION A Notes on Fieldwork, Logging and Laboratory Testing

FIELDWORK PROCEDURES

1.0 CABLE PERCUSSION BORING TECHNIQUES

Unless otherwise stated the light cable percussion technique of 'soft ground' boring has been employed in the formation of boreholes for this contract. In cohesive soils a clay cutter has been used to advance the boreholes whilst in granular deposits a shell has been employed. The combination of clay cutter and shell bring up disturbed material which is generally sufficiently representative to permit identification of the strata. Whilst these particular techniques allow the maximum data to be obtained on strata conditions, a degree of mixing of some layered soils (e.g thin layers of coarse and fine granular material) is inevitable.

2.0 DYNAMIC SAMPLING

As an alternative to cable percussion boring, NHSED employs a number of techniques for the sampling of soils. The most common alternative techniques comprise some form of dynamic sampler system which involves sampling tubes being driven into the ground by means of a sliding weight.

'Window sampling' techniques form the most common type of dynamic sampling and typically comprises 1.0m long steel cylinders with elongated windows. These are driven to the required depth by the use of a percussive hammer. In the 'windowless' mode a plastic liner can be placed in the steel cylinders such that effectively continuous sampling can be undertaken. This method of sampling only produces class 2 or 3 samples which are generally not suitable for any form of laboratory machine testing.

3.0 ROUTINE SAMPLING

In the UK "undisturbed" samples of predominantly cohesive soils are generally obtained in a 102mm diameter open drive sampler as defined in the British Standard Code of Practice BS 5930 (1999) (ref 01). The British Standard notes however that conventional and lined open drive samplers do not produce Class 1 samples for laboratory testing and for this reason NHSED has incorporated a taper into the cutting shoe of all its lined open drive samplers. This taper significantly reduces sample disturbance and for the majority of cohesive soils allows samples to be recovered which are suitable for laboratory machine testing. However it should be appreciated that no sample can be truly undisturbed when sampled in this manner and the effects of disturbance can best be seen in laminated clays in which the laminations may be turned downward on the margins of the sample due to the driving effects of the sampler. Where it is necessary to minimise the effects of sample disturbance e.g in 'sensitive' clays and silts, alternative sampling techniques may be specified and where used, are described in the report text.

In granular deposits and mixed cohesive-granular deposits where it is not possible to recover undisturbed samples, either large or small disturbed samples are normally obtained. The size of these samples are in accordance with the requirements of B.S. 5930 (1999) whilst the frequency of sampling is unique to this contract.

It is important to note that the number of blows taken to drive any kind of sampling tube is not necessarily indicative of the strength of the material being sampled. For this reason NHSED recommends that no attempt is made to correlate such blows with the consistency of cohesive strata.

4.0 ROTARY DRILLING

Where rotary open hole drilling techniques have been employed it is important to note that descriptions of the strata encountered are generally solely based on the foreman drillers observations of cuttings and drill flush returns. Whilst such techniques can provide useful information in certain ground conditions it should be recognised that an accurate determination of subsurface rock strata can only be obtained by rotary coring techniques.

An examination of rock cores obtained by rotary drilling generally enables bedding planes, fissuring and consistency to be observed but does not necessarily reveal the presence of vertical fissures or joints.

Details of the strata encountered are given on the borehole log along with the geologist's assessment of Total Core Recovery (TCR), Solid Core Recovery (SCR) and Rock Quality Designation (RQD) each expressed as a percentage of the individual core runs. When appropriate the Fracture Index (FI) or fracture spacing (If) is also given on the logs and represents respectively the number of natural fractures per metre run of core for core that has a similar intensity of fracturing, or the minimum, average and maximum spacing of such natural fractures over an arbitrary length of core of similar intensity of fracturing.

The symbols and abbreviations used on the rotary borehole logs are explained on the exploratory hole legend and notation sheet that precedes the exploratory hole records. It is considered however that the meaning of the abbreviations NI and NA (not shown in the key) needs further clarification. NI denotes material recovered non intact and applies to material that has numerous fractures or incipient fractures and which is either naturally broken up or which becomes broken up by drilling activities. The result in both cases is that the core is recovered in a highly fragmented state, generally as a gravel. The term NA is the abbreviation for not applicable and refers to any materials to which determination of a fracture index would be inappropriate, i.e for clay bands.

Where significant core loss (>300mm) has occurred, it is NHSED general policy to insert a separate 'stratum' on the log to coincide with the inferred zone of core loss. Unless there is good evidence as to the rock (or soil) type that has been lost, the legend column is left blank. For zones of inferred mine workings, an appropriate legend is used and this together with all the legends used on the logs is shown on the log notation sheet that precedes the exploratory logs in the report.

A summary of logging methodology for rock strata and core measurements is given in Section A: Terminology used in the description and classification of rocks.

5.0 IN SITU DYNAMIC PENETRATION TESTS

Standard or Cone Penetration Testing is generally employed where undisturbed samples cannot be obtained e.g in granular soils, fill and rock etc, in order to obtain an indication of the in situ density, compaction or hardness. Inherent difficulties are present in obtaining true S.P.T or C.P.T "N" values in water bearing fine grained granular deposits and careful consideration of the test technique and groundwater conditions are necessary before test results are used for design purposes.

The full procedure for carrying out the Standard Penetration Test (SPT) is given in BS 1377: 1990, Test 9:3.3 (ref 02). Essentially the test consists of driving a 50mm external diameter split barrel sampler into the soil using a 63.5kg hammer dropping 760mm. The penetration resistance is expressed as the number of blows required to obtain 300mm penetration below an initial seating drive of 150mm through any disturbed ground at the bottom of the borehole. The number of blows for the 300mm test drive penetration is recorded on the borehole logs as the "N" value. A full record of the number of blows required to drive the sampler at 75mm intervals throughout the total 450mm drive is also tabulated along with the groundwater level at the time of test. It is important to distinguish how the blow count relates to the penetration of the sampler and this may be achieved in the following manner:

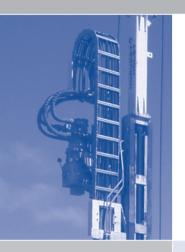
- (i) Where the test drive is terminated at 50 blows the number of blows for the partial test drive (usually 50) and the penetration of the sampler within the test drive are recorded. An approximate "N" value may be obtained by linear extrapolation of the number of blows recorded for the partial test drive.
- (ii) If the total penetration is equal to or less than the 150mm seating drive then the number of blows (usually 25) and the depth of penetration within the initial seating penetration are recorded on the borehole logs.

The "N" value obtained from the Standard Penetration Test may be used to assess the relative density of sands and gravels in accordance with Clause 41.3.2 of BS 5930: 1999, as follows:

Term	SPT N-Value: Blows/300mm Penetration
Very Loose	0-4
Loose	4-10
Medium Dense	10-30
Dense	30-50
Very Dense	Over 50

TABEL 1: DETERMINATION OF RELATIVE DENSITY FROM PENETRATION TESTS

Standard Penetration Testing may also be performed in very stiff/hard clays in which it would be difficult to obtain undisturbed samples. In such cases the S.P.T "N" values may be used for design purposes based on correlations between "N" value and various soil parameters such as those proposed by Stroud and Butler (ref 03).


6.0 **GROUNDWATER**

The groundwater conditions entered on the exploratory hole records are those encountered at the time of the investigation. These however, may not represent the actual conditions or those which may apply in large excavations. The normal rate of boring does not always permit the recording of an equilibrium water level for any one water strike, particularly because the entry of water into a borehole may be reduced or even eliminated due to casing off a water bearing layer or due to a skin being formed on the borehole wall by the drilling tools. It should also be noted that groundwater conditions may vary seasonally and/or tidally and that the water levels as shown at the time of investigation should not necessarily be taken as being constant because they may be subject to such fluctuations.

More accurate information on groundwater conditions can be obtained from exploratory hole installations such as piezometers and standpipes. Normally three or four monitoring visits are required at the site to provide this information.

References

- 01) BS 5930:1999 Code of Practice for Site Investigation. British Standards Institution.
- 02) BS 1377: Part 9: Test 9.3.3 1990 Methods of Tests for Soils for Civil Engineering Purposes. British Standards Institution.
- **03)** Stroud, M.A, Butler, F.G ' The Standard Penetration Test and the Engineering Properties of Glacial Materials' from the Engineering Behaviour of Glacial Materials Proc. of Symp. April 1975.
- 04) NHSED, Manual on the Sampling and Logging of Soil and Rock (SALOSAR). 2005, 3rd Ed.

SUPPORTING FACTUAL DATA SECTION A Notes on Fieldwork, Logging and Laboratory Testing

SOIL DESCRIPTION TERMINOLOGY

1.0 GENERAL PROCEDURES

Soil descriptions contained in this report have been produced in accordance with the procedure and principles given in BS 5930 (1999) (ref 01). The SALOSAR document produced by NHSED provides amplification on all aspects of the descriptive terminology given in the British Standard, (ref 02).

For a soil description the main soil characteristics should be given in a standard word order although the word order can be adjusted to enhance and clarify if appropriate. The main soil characteristics can be divided as follows:-

- 1 Mass Characteristics
- comprising state and structure
- 1a Density and Field Strength
- 1b Discontinuities
- 1c Bedding

- 2 Material Characteristics
 - comprising nature and state
- 2a Colour
- 2b Composite Soil Types: particle grading and composition, shape and size
- 2c Principal Soil Type, name in capitals eg CLAY

3 Stratum Name (optional)

3a Geological Formation

For descriptions used in this report the soil colour is placed after the field strength or density ie stiff grey CLAY. Other word order is as described previously.

The basic soil categories may be broadly summarised as follows, with categories i to iii covered by these notes and category iv and v by separate notes.

- (i) Very coarse soils: greater than 60mm in diameter, ie cobbles and boulders.
- (ii) Coarse soils: 0.06mm to 60mm in diameter, ie sands and gravels.
- (iii) Fine soils: less than 0.06mm in diameter, ie clays and silts.
- (iv) Organic soils.
- (v) Man made "soils".

2.0 MASS CHARACTERISTICS OF SOILS

2.1 Cohesive Soils

For cohesive material the strength guide given in Table 1 on the following page shall be used. Unless specified for individual contracts no subdivision of material strength categories is used.

Term	Field Identification	Undrained Shear Strength kN/m ²
Very Soft	Can be squeezed through fingers	<20
Soft	Easily remoulded by hand	20-40
Firm	Hard to remould by hand	40-75
Stiff	Indented slightly by thumb	75-150
Very Stiff	Indented by thumb nail	150-300
Hard	Can be scratched	>300

TABLE 1: STRENGTH SCALE GUIDE FOR COHESIVE MATERIAL

N.B: Clays with undrained strengths greater than 300 kN/m² can be described as hard clays or as very weak mudstones.

2.2 Granular Soils

For granular deposits relative density may only be determined by the standard penetration test (S.P.T). The following table provides a scale of terms related to S.P.T 'N' values (see BS 1377:1990) (ref 03).

Term	Field Identification (generally in trial pits)	S.P.T 'N' Values (blows for 300mm penetration)
Very loose	Can be excavated with a spade	0-4
Loose	and 50mm wooden peg can be easily driven	4-10
Medium dense	-	10-30
Dense	Requires pick for excavation	30-50
Very dense	and 50mm wooden peg is hard to drive	over 50

TABLE 2: ASSESSMENT OF RELATIVE DENSITY FOR GRANULAR SOILS

N.B: The field identification terms for very loose/loose material and dense/very dense material are very general and should be treated with caution.

2.3 Discontinuities

The type of discontinuity should be described eg fissures, faults and shear planes together with their spacing as given in Table 3. Discontinuity openness, and surface texture eg rough, smooth, polished, striated should be recorded although this need not always be added to the borehole log if the required level of detail is low.

2.4 Bedding

Bedding spacing is assessed using the thickness terms given in Table 3.

DISCONTINUITIES Scale of Spacing Term	Mean Spacing mm	BEDDING Scale of Bedding Term	Mean Thickness mm
Very widely	>2000	Very thickly bedded	>2000
Widely	2000-600	Thickly bedded	2000-600
Medium	600-200	Medium bedded	600-200
Closely	200-60	Thinly bedded	200-60
Very closely	60-20	Very thinly bedded	60-20
Extremely closely	<20	Thickly laminated	20-6
		Thinly laminated	<6

TABLE 3: DESCRIPTIONS FOR DISCONTINUITIES AND BEDDING

N.B: Spacing terms are also used for describing the distance between partings, isolated beds, laminae or roots etc.

N.B: Interbedded/interlaminated: alternating layers of different material type. These terms must be given a thickness if material is present in equal proportions. Otherwise the thickness of and spacing between subordinate layers must be defined.

3.0 MATERIAL CHARACTERISTICS OF SOIL

An examination of insitu soil deposits, disturbed or undisturbed samples allows the material characteristics to be recorded. These characteristics include colour, particle shape, particle grading and particle composition.

3.1 Colour

The recorded colour should be based on the logger's general impression of the overall colour. For material with more than three colours the term multicoloured should be used. The term mottled should be applied to soils which exhibit two colours, one of which is subordinate to the other.

White, cream, grey, black, yellow, orange, red, brown, green and blue etc may be used but supplemented as necessary with: light, dark, mottled and reddish brownish etc. All coloration associated with chemical changes should be noted in grey gleying on fissures.

3.2 Soil Types (Including Composite Soils)

3.2.1 Very Coarse Soils (Boulders and Cobbles)

Where the soil sample is considered large enough to be representative, material is described as follows:-

TABLE 4: DESCRIPTORS FOR VERY COARSE SOILS

Main Name	Estimated Boulder/Cobble Content of Very Coarse Fraction
BOULDERS	Over 50% is of boulder size (>200mm)
COBBLES	Over 50% is of cobble size (200mm to 60mm)

Mixtures of very coarse and finer materials are described by combining terms for the very coarse constituents with those for the finer constituents as follows:-

TABLE 5: DESCRIPTORS FOR MIXTURES OF VERY COARSE AND FINER SOILS

Term	Composition (Approx %)
BOULDERS (or COBBLES) with a little finer material (1)	Up to 5% finer material
BOULDERS (or COBBLES) with some finer material (1)	5% to 20% finer material
BOULDERS (or COBBLES) with much finer material (1)	20% to 50% finer material
FINER MATERIAL with many boulders (or cobbles)	50% to 20% boulders (or cobbles)
FINER MATERIAL with some boulders (or cobbles)	20% to 5% boulders (or cobbles)
FINER MATERIAL with occasional boulders (or cobbles)	Up to 5% boulders (or cobbles)

(1) The description of "finer material" is made in accordance with BS 5930 41.4.2 to 41.4.6 ignoring the very coarse fraction; the principal soil type name of the finer material may also be given in capital letters, e.g. sandy GRAVEL with occasional boulders; COBBLES with some sandy CLAY.

3.2.2 Coarse Soils (Gravel and Sand)

A coarse soil (omitting any cobbles and boulders) contains 65% or more of SAND or GRAVEL. The following terms may be used to describe the coarse fraction:-

TABLE 6: DESCRIPTORS FOR MIXTURES OF VERY COARSE AND FINER SOILS

Term	Principal Soil Type	Approximate Proportion of Secondary Constituent
Slightly sandy or gravelly	SAND	Up to 5%
Sandy or gravelly	ОГ	5% to 20%
Very sandy or gravelly	GRAVEL	Over 20%
-	SAND and GRAVEL	About equal proportions

3.2.3 Fine Soils and Mixtures of Fine and Coarse Soils

Fine soil should be described as either a SILT or a CLAY. The use of silty CLAY or clayey SILT is not permitted.

For deposits that contain a mixture of soil types the descriptors given in Table 7 are used. The dominant secondary fraction is placed immediately before the principal soil type. It should also be noted that the terms silty and clayey are mutually exclusive in a coarse soil. The use of the terms sandy and gravelly are however permitted.

TABLE 7: DESCRIPTORS FOR FINE SOILS AND COMPOSITE SOIL TYPES

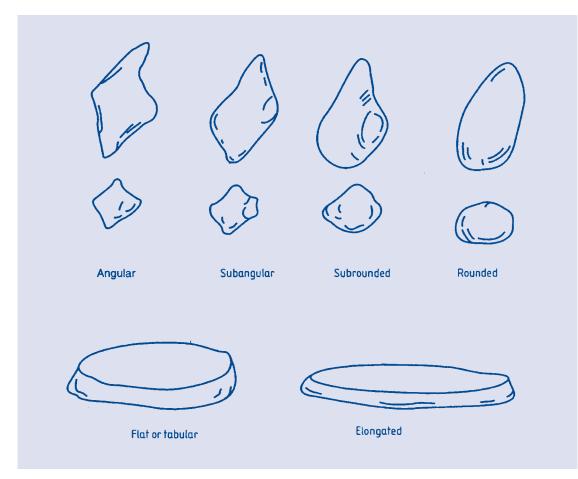
Term	Principal Soil Type	Approximate Prop Coarse Soil	oortion of Secondary Constituent Coarse and/or Fine Soil
Slightly clayey or silty and/or sandy or gravelly	SAND and/or		>5%
Clayey or silty and/or sandy or gravelly	GRAVEL		5% - 20% *
Very clayey or silty and/ or sandy or gravelly			>20% *
Very sandy or gravelly	SILT or	>65% +	
Sandy and/or gravelly	CLAY	35% - 65%	
Slightly sandy and/or gravelly		<35%	

* or described as fine soil depending on assessed engineering behaviour

+ or described as coarse soil depending on assessed engineering behaviour

3.3 Particle Shape and Grading

For coarser granular deposits (gravel and cobbles) the particle shape should be described as follows:-


TABLE 8: DESCRIPTORS FOR PARTICLE SHAPE

Angularity	Form	Surface Texture
Angular	Flat	Rough
Subangular	Elongated	Smooth
Subrounded		
Rounded		

Notes: Form and surface textural descriptors are optional.

The distribution of particle sizes within sands and gravels should be described stating the predominant size fraction present eg fine to medium SAND.

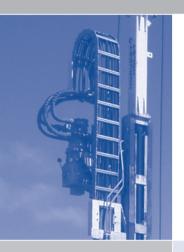


FIGURE 1: PARTICLE ANGULARITY AND FORM TERMS

References

- 01) BS 5930: (1999) Code of Practice for Site Investigation. British Standards Institution.
- 02) NHSED, Manual on the Sampling and Logging of Soil and Rock (SALOSAR), 2005, 3rd Ed.
- 03) BS 1377: 1990 Methods of Test for Soils for Civil Engineering Purposes. Part 9 British Standards Institution.

SUPPORTING FACTUAL DATA SECTION A Notes on Fieldwork, Logging and Laboratory Testing

MADE GROUND DESCRIPTION TERMINOLOGY

1.0 GENERAL DEFINITIONS

Man made soils may be defined as those materials that have not been laid down by geomorphological processes. Under the heading of 'man made soils' two distinct material types can be identified as follows:-

TABLE 1: DEFINITIONS FOR MAN MADE SOILS

NATURAL SOILS (Reworked)	Use normal BS5930 approach and terminology as outlined previously. Usually not too much of a problem. Can be tested in accordance with BS1377.
MAN MADE MATERIALS	Can frequently also be described using normal approach and terminology as above, and tested geotechnically.
	Includes materials that defy description in any standard manner and includes a range of exotic materials and artefacts. Often not testable in the field or in the laboratory. For example cannot measure strength of a bicycle frame or liquid limit of plastic.

There is also a distinction between the terms "Fill" and "Made Ground" as follows:

FILL = Material placed under engineering control MADE GROUND = Material placed without any kind of control, ie non engineered

2.0 IDENTIFICATION OF MAN MADE SOILS

Some common examples of man made soils are given in Table 2 on the following page. The table illustrates that the heading of 'man made' soils can cover a wide variety of materials, some of which may not readily appear to be anything other than natural.

Natural soils re-laid by man may be difficult to identify as such but look for evidence in the form of artefacts or relic structure in the material.

For example as few as one or two artefacts may be diagnostic (rare brick fragments or car body at base of trial pit). Lenses or pockets of clay that are laminated etc help to indicate natural material that has been relaid. However be aware of the following:

- * Contamination by driller (Clinker from around rig, green grass from 15m...).
- * Contamination during trial pitting (brick rubble can fall from the upper layers in a pit and then get pushed in to natural deposits by the action of the excavator bucket).

CATEGORY	EXAMPLE
Natural Soils re-laid by man	Embankment Fill Colliery Spoil (Coarse Discard) Drainage Layer e.g Gravel
Man Made Materials that can be described and which are testable geotechnically	Abutment backfill e.g Crushed rock Colliery Spoil (Fine Discard) Mine Tailings from non-coal mines Crushed Concrete Pulverised Fuel Ash (PFA) Chalk whiting (slurry from cement manufacture)
Man Made Materials that are NOT readily describable and which are not testable geotechnically	Landfill Demolition rubble (including frames, slates etc) Fly tipped materials Burgy (glass work waste)

TABLE 2: EXAMPLES OF COMMONLY FOUND MAN MADE SOIL

3.0 DESCRIPTION OF MAN MADE SOILS

Information that needs to be reported includes the following:-

- * Origin of materials, if known from desk study.
- * Layers and their inclination to inform on mode of tipping, whether ponded, end tipped, spread of stockpiled.
- * Large objects, obstructions such as concrete, masonry walls, old cars.
- * Presence of hollow objects, compressible/collapsible objects or voids such as oil drums, cellars, tanks.
- * Chemical wastes and dangerous or hazardous substances such as creosote, hospital wastes, unlabelled drums, asbestos.
- * Decomposable materials with note on degree of decomposition such as garden waste, paper.
- * Smell such as organic, phenolic, sulphurous, petrol.
- * Striking colours
- * Any dating possible such as on bottle types, newspapers, papers.
- * Signs of heat or combustion such as steam, smoke, burnt shale.

NOTES

* In general do not attempt to assign strength or in situ density descriptors to made ground. Where describing fill as opposed to made ground it may be possible to use the descriptors that are used for natural soils.

- * Large or hollow objects cannot be sampled so the description is the sole information on condition and character of the features.
- * Group together under the above categories, give volumetric percentages where possible.

Granular made ground may be given a particle size, although the following description methodology should be employed.

MADE GROUND: Grey fine to coarse gravel sized fragments of brick and concrete.

OR

MADE GROUND: Grey gravely clay with occasional subangular cobble sized fragments of brick. Gravel sized fragments are angular to subangular, fine, medium and coarse of brick.

In these two examples, note the use of term 'sized fragments' to describe the granular content. Because the material is man made we do not use the terms sand, gravel or cobbles etc in the same context as for natural soils. In other words it would be incorrect to use the following:

MADE GROUND: Grey gravelly clay with occasional cobbles. Gravel is angular coarse of brick, cobbles are rounded of brick.

The use of sand, gravel or cobble prior to 'sized fragments' is only intended to define a size range to the granular made ground material.

Similar grain size indicators can also be used to describe the size of other man made materials such as concrete, bituminous road surfacing etc. In addition the terms can also be used to describe natural material that has been modified by man, such as wood that may be present in the form of railway sleepers etc. Where whole man made items are identified they should be described as follows:

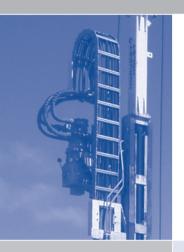
'with numerous wooden railway sleepers'

For such materials it is necessary to add size measurements, since no other quantifying terms are used.

4.0 DEFINITIONS OF SOME MAN MADE SOILS

There is generally a lack of national guidance on the meaning of common terms used in made ground. This applies particularly to man made materials. For this reason it is vital to provide as much information as possible on the material being logged, whilst staying within the guidance provided in these notes.

For some sites it is advisable to determine a set of definitions for the likely range of made ground to be encountered at the start of the project. This will allow all those responsible for the description of materials to provide unified logs for the site.


Some suggestions for one group of commonly encountered made ground are given below.

COMBUSTION PRODUCTS, often physically unstable and usually containing concentrations of metals and poly aromatic hydrocarbons. The definitions below are workable compromises.

- ASH: Sand or silt size by definition, so do not need but can use "ash sand", and cannot have "gravel size ash" although cinders can be gravel size but readily crush down. Can include unburnt coal.
- CLINKER: Gravel size or larger by definition so do not need but can use "clinker gravel", and cannot have "sand size clinker".
- SLAG: Materials fused or poured as liquid or scum or froth, of any size or shape, and will be at least strong. If in blocks or layers, can present difficulties for borehole or trial pit penetration. Slag is often pelletised, expanded or crushed for reuse in construction.

References

- 01) BS 5930 (1999) Code of Practice for Site Investigation. British Standards Institution.
- 02) NHSED, Manual on the Sampling and Logging of Soil and Rock, (SALOSAR) 2005, 3rd Ed.

SUPPORTING FACTUAL DATA SECTION A Notes on Fieldwork, Logging and Laboratory Testing

AGGRESSIVE GROUND AND GROUNDWATER CONDITIONS

Certain ground and groundwater conditions may be described as aggressive depending on their chemical composition which is related to previous industrial use. Where foundations are proposed to be constructed on industrial sites or on landfill sites in which the ground or groundwater may be contaminated with chemical waste, detailed consideration needs to be given to both the method of investigation and the severity of ground and groundwater conditions with respect to construction materials. For such sites it will usually be necessary to undertake a full chemical analysis in order to identify the potentially aggressive compounds.

On sites where new concrete foundations are to be constructed in natural ground it is usually only necessary to examine the sulfate content and pH level of the ground. The sulfate content of soils varies widely and can range from being virtually absent to extremely high concentrations in crystals such as gypsum. In between these two extremes sulfate may be disseminated throughout a soil or may be present in discrete bands or lenses. Because of this wide variation in the sulfate content of soils, the most reliable indication of possible aggressive conditions can be obtained by testing representative samples of groundwater. In order to take account of natural variations in the distribution of sulfates in the ground, samples should be taken at a number of locations that are well spaced across the site and at different depths.

The methods for the determination of total sulfate of soil and the sulfate content of groundwater and 2:1 aqueous soil extracts are given in various specifications including BS 1377: 1990: Part 3: Section 5 (ref 01). The results of tests performed in accordance with BS 1377 yield results which are expressed as percentage of dry weight retained or grammes/litre SO3. Tests performed in accordance with other specifications however, tend to express results as SO4.

The classification of natural sulfate conditions is based on BRE Special Digest 1 (2005) (ref 02). This digest makes most use of sulfate values expressed as milligrammes/litre S04. In order to convert the results expressed as S03 (BS 1377) to S04 (BRE Digest) it is necessary to apply a multiplication factor of 1.2. In the following discussion of sulfate conditions values given in the tables are expressed in terms of S04.

The current approach to the classification of aggressive ground conditions is based on the aggressive chemical environment for concrete or ACEC. This takes into account the type of site, sulfate concentration and ground water acidity and mobility. Different site assessment procedures are used for natural ground, for brownfield sites that contain industrial waste and pyritic ground. The reactions of sulfates in the presence of other ions, notably carbonate and magnesium are also taken into account.

As with the previous Special Digest 1, there are five design sulfate classes (designated DS1 to DS5) for the site, although in the current digest natural ground and brownfield sites are now covered by separate tables. More subdivision of ACEC Class is given in the table for brownfield locations and this reflects the complexity of conditions that often apply.

In general when the results of sulfate determinations are assessed emphasis must be given to the samples which fall in the higher classes. Therefore if eight out of ten samples are found to be non aggressive and fall within Class DS1 and the remainder fall within Class DS2 it will be necessary to adopt the precautions appropriate to Class DS2 conditions for the whole site. The current digest differentiates between 'natural ground locations' and brownfield locations'.

Table 1 on page 2 is reproduced from the digest and deals with natural ground locations.

SULFATE	GROUNDWATER					
DESIGN SULFATE CLASS FOR LOCATION	2:1 WATER/SOIL EXTRACT (b)	GROUNDWATER	TOTAL POTENTIAL SULFATE (c)	STATIC WATER	MOBILE WATER	ACEC CLASS FOR LOCATION
1	2 (SO ₄ mg/l)	3 (SO ₄ mg/l)	4 (S0 ₄ %)	5 (рН)	6 (рН)	7
DS-1	<500	<400	<0.24	>2.5	>5.5 _(d) 2.5-5.5	AC-1s AC-1 (d) AC-2z
DS-2	500-1500	400-1400	0.24-0.6	>3.5 2.5-3.5	>5.5 2.5-5.5	AC-1s AC-2 AC-2s AC-3z
DS-3	1600-3000	1500-3000	0.7-1.2	>3.5 2.5-3.5	>5.5 2.5-5.5	AC-2s AC-3 AC-3s AC-4
DS-4	3100-6000	3100-6000	1.3-2.4	>3.5 2.5-3.5	>5.5 2.5-5.5	AC-3s AC-4 AC-4s AC-5
DS-5	>6000	>6000	>2.4	>3.5 2.5-3.5	>2.5	AC-4s AC-5

TABLE 1: AGGRESSIVE CHEMICAL ENVIRONMENT FOR CONCRETE (ACEC) CLASSIFICATION FOR NATURAL
GROUND LOCATIONS (a)

NOTES

a) Applies to locations on sites that comprise either undisturbed ground that is in its natural state or clean fill derived from such ground. b) The limits of Design Sulfate Classes based on 2:1 water/soil extracts have been lowered relative to previous digests.

c) Applies only to locations where concrete will be exposed to sulphate ions (SO4) which may result from the oxidation of sulfides (eq pyrite) following ground disturbance.

d) For flowing water that is potentially aggressive to concrete owing to high purity or an aggressive carbon dioxide level greater than 15mg/l, increase the ACEC Class to AC-2z.

Explanation of suffix symbols to ACEC Class

Suffix 's' indicates that the water has been classified as static

Concrete place in a ACEC Classes that include the suffix 'z' primarily have to resist acid conditions and may be made with any of the cements listed in Table D2 in the Digest.

Additional testing is required for those natural sites that contain pryrite. In particular it is essential to take account of the total potential sulfate content which might result from oxidation following ground disturbance. On such sites it is necessary to determine total sulfate content (AS% S04), total sulfur (TS%). The total potential sulfate is then determined from TPS%S04=3.0 x TS%S. Finally the amount of oxidisable sulfides (OS as %S04) is determined by subtracting the acid soluble sulfates(AS%S04) from the total potential sulfate content: OS%S04 = TPS%S04 – AS%S04. It is important to note that this testing is in addition to and not instead of the standard sulfate determination testing.

Unless the site can be demonstrated to comprise natural ground, Table 2 for brownfield locations must be used in all assessments for the design of concrete. It should be noted that the effects of the magnesium ion become relevant to concrete design for certain Design Sulfate Classes.

TABLE 2: AGGRESSIVE CHEMICAL ENVIRONMENT FOR CONCRETE (ACEC) CLASSIFICATION FOR **BROWNFIELD LOCATIONS (a)**

SULFATE AND MAGNESIUM DESIGN SULFATE 2:1 WATER/SOIL CLASS FOR EXTRACT (b) LOCATION			GROUNDWATER		TOTAL POTENTIAL SULFATE (c)	WATER WATER CLAS		ACEC CLASS FOR LOCATION
1	2 (SO ₄ mg/l)	3 (Mg mg/l)	4 (SO ₄ mg/l)	5 (Mg mg/l)	6 (S0 ₄ %)	7 (pH) (d)	8 (pH) _(d)	9
DS-1	<500		<400		<0.24	>2.5	>6.5 (d) 5.5-6.5 4.5-5.5 2.5-4.5	AC-1s AC-1 AC-2z AC-3z AC-4z
DS-2	500-1500		400-1400		0.24-0.6	>5.5 2.5-3.5	>6.5 5.5-6.5 4.5-5.5 2.5-4.5	AC-1s AC-2 AC-2s AC-3z AC-4z AC-5z
DS-3	1600-3000		1500-3000	-	0.7-1.2	>5.5 2.5-5.5	>6.5 5.5-6.5 2.5-5.5	AC-2s AC-3 AC-3s AC-4 AC-5
DS-4	3100-6000	<1200	3100-6000	<1000	1.3-2.4	>5.5 2.5-3.5	>6.5 2.5-6.5	AC-3s AC-4 AC-4s AC-5
DS-4m	3100-6000	>1200 (e)	3100-6000	>1000 (e)	1.3-2.4	>5.5 2.5-5.5	>6.5 2.5-6.5	AC-3s AC-4m AC-4ms AC-5m
DS-5	>6000	<1200	>6000	<1000	>2.4	>5.5 2.5-3.5	>2.5	AC-4s AC-5
DS-5m	>6000	>1200 (e)	>6000	>1000 (e)	>2.4	>5.5 2.5-5.5	>2.5	AC-4ms AC-5m

NOTES

a) Brownfield locations are those sites or parts of sites that might contain chemical residues produced by industrial processes.

b) The limits of Design Sulfate Classes based on 2:1 water/soil extracts have been lowered relative to previous digests.

c) Applies only to locations where concrete will be exposed to sulfate ions (504) which may result from the oxidation of sulfides (eg pyrite) following ground disturbance.

d) An additional account is taken of hydrochloric and nitric acids by adjustment to sulfate content

e) The limit on water soluble magnesium does not apply to brackish groundwater (chloride content between 12000mg/l and 17000mg/l). This allows 'm' to be omitted from the relevant ACEC classification. Sea water (chloride about 18000mg/l) and stronger brines are not covered by this table.

Explanation of suffix symbols to ACEC Class

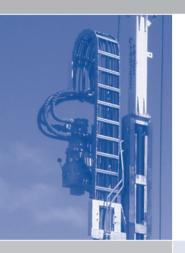
Suffix 's' indicates that the water has been classified as static

Concrete placed in ACEC Classes that include the suffix 'z' primarily have to resist acid conditions and may be made with any of the cements listed in Table D2 in the Digest. Suffix 'm' relates to the higher levels of magnesium in Design Sulfate Classes 4 and 5.

SECTION A 6: ASSESSMENT OF AGGRESSIVE GROUND AND GROUNDWATER CONDITIONS

The pH value of groundwater provides a crude measure of the potential aggressiveness due to the presence of organic acids. The standard procedure for measuring the acidity of soils and groundwater is the electrometric method using a pH meter and is described in BS 1377 (1990): Part 3: Section 5. The pH value of pure water is 7.0 and the presence of acid substances will yield results with values less than 7. It should be noted however that the pH of most natural waters depends mainly on the dissolved carbon dioxide content and therefore lies between pH values of 6.5 and 8.5. It is generally accepted that soils or groundwater with pH values in the range 6 to 9 may be classified as near neutral. It should be noted that the pH value of soil and groundwater can change with time and it is therefore necessary to carry out testing on fresh samples of soil or water.

The pH value of the soil or groundwater also needs to be taken into consideration when the recorded sulfate content is borderline between two classes or approaches the upper limit of a given class. In these circumstances both the pH value and the mobility of the groundwater needs to be assessed and where doubt exists, the sample should be placed in the more severe class of the sulfate classification. This general approach may be justified on the grounds that the acids present will tend to break down the concrete surface and therefore make it more susceptible to sulfate attack. This will be especially so if the sample contains large amounts of sulfides since these can be converted to sulfuric acid.


Organic acids are often found in peaty or marshy soils in which the pH value is below 6.0. In such soils it will be necessary to take specific precautions to protect any concrete which would be exposed to organic acids. The recommended precautionary measures outlined in Tomlinson (2001) (ref 03) could be followed. In all cases where mineral acids are present the groundwater is likely to be aggressive with regard to foundation concrete and in these circumstances the recommendations given in BRE Special Digest Part C will need to be followed.

Apart form acid groundwater, the effects of static and mobile ground water tables are taken into account in the digest in 'Box C9' and the incremental rules in this table need to be viewed in relation to Tables C1 and C2 in the Digest.

Alkaline groundwater is not generally considered aggressive to concrete unless present in high concentrations. Unless the aggregate used in foundation concrete is of a reactive type, pH values of groundwater up to pH = 14 need not be considered as problematic.

References

- 01) BS 1377: 1990 Methods of Test for Soils for Civil Engineering Purposes. Part 3: Chemical and Electrochemical Tests, British Standards Institution.
- 02) Building Research Establishment: 2005: Concrete in Aggressive Ground. BRE Special Digest 1. Building Research Station, Garston
- 03) Tomlinson M.J: 2001: Foundation Design and Construction. 7th Edition, Pearson, Prentice Hall.

SUPPORTING FACTUAL DATA SECTION B Exploratory Hole Records and Field Data

EXPLORATORY HOLE LEGEND AND NOTATION SHEET

EXPORATORY HOLE LOG LEGENDS

CODE	DESCRIPTION	LEGEND	CODE	DESCRIPTION	LEGEND
101	Topsoil		806	Coal	
102	Made Ground		807	Breccia	
104	Concrete		808	Conglomerate	
201	Clay	Sanatar Sanatar S Sanatar Sanatar S Sanatar Sanatar S Sanatar Sanatar S Sanatar Sanatar S	809	Fine Grained Igneous	
301	Silt	$\left[\begin{smallmatrix} x & \hat{x} & x \\ x & x \\ x$	810	Medium Grained Igneous	+ + + + + + + +
401	Sand		811	Coarse Grained Igneous	+++++
501	Gravel		812	Fine Grained Metamorphic	
601	Peat	stre stre stre e stre stre e	813	Coarse / Medium Grained Metamorphic	
701	Cobbles		EVT	Evaporite	$\begin{array}{c} \circ & \circ & \circ & \circ & \circ & \circ \\ \circ & \circ & \circ & \circ &$
730	Boulders		MWS	Mine Workings	
801	Mudstone		904	Grout	
802	Siltstone	× × × × × × × × × × × × × × × × × × ×	905	Arising	
803	Sandstone		BLK	Zone of No Recovery	
804	Limestone		WTR	Water	
805	Chalk		types are re	soils types comprise a mixture of parti epresented graphically on the explorate the legends shown on this sheet.	cle sizes. These soil ry hole logs by

SAMPLING NOTATION

U	Undisturbed U100 or U38 sample (not differentiated)
Р	Piston Sample
BLK	Block Sample
Μ	Mazier Sample
TW	Thin Walled Sample
L	Liner Sample obtained from windowless sampler
D	Small Disturbed Sample
В	Bulk Disturbed Sample
LB	Large Bulk Disturbed Sample
C	Core Sample
ES	Environmental Soil Sample
EW	Environmental Water Sample
W	Water Sample
UF	No Recovery in U Sample
PF	No Recovery in P Sample
TWF	No Recovery in TW Sample

IN SITU TEST NOTATION

S	Standard Penetration Test
С	Cone Penetration Test
NP	No Penetration for S or C
V	Vane Test
HV	Hand Vane
HP	Hand Penetrometer
К	Permeability Test (test type not differentiated)
Pr	Pressuremeter Test

OTHER NOTATION

TCR	Total Core Recovery
SCR	Solid Core Recovery
RQD	Rock Quality Designation
FI	Fracture Index
If	Fracture Spacing
NI	Non Intact
NA	Data Not Applicable
NR	Data Not Recorded

SUPPORTING FACTUAL DATA SECTION B Exploratory Hole Records and Field Data

CABLE PERCUSSION AND ROTARY DRILLING RECORDS

N	Norwest Holst Soil Engineering BOREHOLE LOG - CABLE PERCUSSION											d.		Hole ID. BH01 Header			
Contra Projec Client Consu	t NM Star	001 Rothschild hhope plc b Geotechr		Metho Drillin Drille Logge	ig Rig r		Cable F Dando MH IM		sio	Gro Orie Date	rdinates und Leve ntation e Started e Comple		180 14.3 Vert 25/0	2703.82 999.52 N 99m OD ical 08/2007 08/2007			
			PROGRESS								BC	ORING	DETA	ILS			
Date	e Time	Hole depth	Casing depth	Water depth	1	Rem	narks			ard Strata Har om depth to	rd Strata depth	Chise hou		F	Remark	S	
25/08/2 25/08/2 26/08/2 26/08/2 27/08/2	007 1700 007 0800 007 1700	5.50 28.95 28.95 52.30 52.00	0.00 9.70 9.70 9.70 0.00	DRY DRY DRY 32.00	Start of B End of Sh Start of S End of Bc Installatio	hift hift pring											
CASING WATER STRIKES																	
Hole diam.	Max depth of hole at dia.	Casing	Max depth of casing of dia.	Date	Time		ike at epth	Rise dept	to	Time taken to rise	Flov	v		g depth ke time		g depth al flow	
200	52.30	200	9.70	26/08/2007			j1.00	44.00		20	Fast 9.70					NR	
		GENER	RAL NOTES						-		SPT D	ETAILS	;				
GENERAL NOTES SPT DETAILS I. All measurements during drilling taken fom street level. 2. Concrete at road level (0.5m) and car park basement floor slab (2.8m) drilled out by McGeels. Depth Type Incremental blow count/penetration Casing 3. Groundwater encountered at 51.0m, fast inflow rate. 5.90 C 50/160mm (3,4,13.31,6/10mm) 5.90 beposits (9.70m) with a 3.0m slotted section at base of pipe. 5. Flush cover installed in concrete at basement level car park. 9.00 C N=34 (3,3.5,6.8) 9.70 5. Flush cover installed in concrete to basement level car park. 8.30,21.08) 9.70 9.70 6. Backfill details: grout to 9.7m, gravel to 6.8m, bentonite seal to 3.8m, concrete to basement level at 3.3m. 16.50 S N=24 (3,3.7,7.9, 9.70) 9.70 22.50 S N=34 (6,7.10,10,11) 9.70 9.70 25.60 S N=34 (6,7.10,10,11) 9.70 26.50 S N=44 (6,8.10,11,11,3) 9.70 26.50 S N=44 (6,8.10,11,11,3) 9.70 26.50 S N=46 (6,8.10,11,12,13,13) 9.70 26.50										7.50 9.00 9.70 9.70 9.70 9.70 9.70 9.70 9.7	Water Depth DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY						
NOTE	S: All depths in n												Form	Form ARIAL CP HEADER			
			minutes, chiselli		ours.								Versi		04		

Γ

		Vest Hols			-		-		ę	Hole I BH0 Sheet 1 c	1
ntract No. pject	F15001 NM Rothschild Bank	Method Drilling Rig		e Percu do 2000			Coordinates	5832 1809 14.39	99.52	N	
ent	Stanhope plc	Driller Logged by	MH IM			С	Prientation Date Started	Vertical 25/08/2007			
nsultant	Arup Geotechnics	Logged by	IIVI			Date Started Date Complet			3/2007 3/2007		
	Description of Strata		Legend	Depth Below G.L.	Datum Level		Sampling	SPT N & (U blows)		PT type & depth	Ins at
MADE GROL	JND: Concrete (road level)				-			-			-
/OID: Basem	nent car park.			0.50	- 13.89			-			
					-			- - -			
					-			-			-
					-			-			
					-			-			-
					-			-			-
					-			-			-
					-			-			-
					-			 - -			-
IADE GROL	JND: Basement floor slab.			3.30	- 11.09 -			-			
					-			-			
				\$	-			-			
								-			
					-			-			
					-			-			-
				5.50	- 8.89	D1	5.50 - 5.90	-			
/ery dense bi ingular to sub	rown, white, grey and black very brounded fine to coarse flint GRA	sandy AVEL.		5.50	0.09	B1	5.50 - 5.90				
Sand is fine to	o coarse. RACE DEPOSITS)				-	B2	5.90 - 6.35	-€50/160mm 	С	5.90 6.2	
					-			-			-
					-						
					-			-			-
					-			-			
						B3	7.50 - 7.95	-€50/180mm	С	7.50 7.83	3
					-			-			
					-			-			
					-			-			
					-			-			
From 9.0m	n: Sand becoming predominantly	coarse.			-	B4	9.00 - 9.45	— C39 -	С	9.00 9.45	5
				9.55	- - 4.84	D5	9.55	(20)			
Stiff brownish	n grey slightly sandy CLAY with	· · · ·		9.80	4.59	U6	9.60 - 10.00	- (30) -			
			<u> </u>	1	L		<u> </u>	Form		ARIAL CP L	1
TES: All dep	oths in metres, all diameters in m eader sheet for details of boring,	illimetres.						Version		3.08	00

Norwest Holst Soil Engineering Ltd. BOREHOLE LOG - CABLE PERCUSSION језт 🗘

BH01 Sheet 2 of 6

12.50 12.95-

14.50 14.95

16.50 16.95

Hole ID.

	BORI					5551014			Sheet 2 Or	0	
Contract No.	F15001	Method	Cable Perc	ussion	C	oordinates	58327	703.8	32 E		
Project	NM Rothschild Bank							180999.52 N			
		Drilling Rig	Dando 200	00	G	round Level	14.39				
Client	Stanhope plc	Driller	MH		0	rientation	Vertic	al			
	Logged by				Da	ate Started	25/08	/200	7		
Consultant	Arup Geotechnics				Da	ate Completed	26/08	/200	7		
			Dept				SPT N &	s	SPT type	Install-	
	Description of Strata		Legend Below G.L.			Sampling	(U blows)		& depth	ation	
				-	D7	10.00	-		-		
	m : occasional subrounded medi	um flint	E-E-E-E	-			-		-		
	re fine black silty sandy pockets. LAY FORMATION)		10.50	3.89	D8	10.50 - 10.96	- S24	S	10.50 -		
\ <u>.</u>	,	/	/=	E					10.95 -		
	Om : Firm grey slightly sandy CL ded fine siliceous gravel. (LOND			_			-		-		
FORMATION				_			_		-		
Firm arevish	brown CLAY.	/		_			_		-		
	LAY FORMATION)		F	F	U9	11.50 - 11.95	(30)		-		
			E-E-E-E	F			-		-		
				<u>L</u>	D10	11.95	<u>-</u>				

D11

U12

D14

U15

D16 15.95

D17

U18

12.50 - 12.95

13.50 - 13.95

14.50 - 14.95

15.50 - 15.95

16.50 - 16.95

17.50 - 17.95

17.95 D19

13.95 D13

S24

(35)

S25

(35)

S31

(40)

s

s

s

--- At 12.50m: With localised fine sandy pockets.

--- At 13.95m: With localised pockets of fine greyish black sand (0.02 x 0.01m)

NORL

Πι

--- From 15.95m: Becoming sandy.

--- At 16.50m: With fine gravel size white selenite crystals.

--- From 17.95m: Becoming less sandy.

18.50 18.95-D20 18.50 - 18.95 S33 s U21 19.50 - 19.95 (45) 5 56 D22 19 95 Form ARIAL CP LOG NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water Version 3.08 strikes. See legend sheet for key to symbols. Revised 29/03/2006

Norwest Holst Soil Engineering Ltd. BOREHOLE LOG - CABLE PERCUSSION

NORWEST

HOLST

Hole ID. **BH01** Sheet 3 of 6

Revised

29/03/2006

Contract No. Project	F15001 NM Rothschild Bank	Method Drilling Rig	Cable Percussion Dando 2000				oordinates	18099	5832703.82 E 180999.52 N 14.39m OD				
Client	Stanhope plc	Driller Logged by	MH	002000		0	rientation ate Started	Vertic	Vertical 25/08/2007				
Consultant	Arup Geotechnics					D	ate Completed	26/08	/200	7			
	Description of Strata		Legend	Depth Below G.L.	Datum Level		Sampling	SPT N & (U blows)		PT type & depth	Install- ation		
Stiff grey CLA	Y. (LONDON CLAY FORMATION)				E					-			
	0m: Becoming slightly sandy with fine ite selenite crystals.					D23	20.50 - 20.95	- S37	S	20.50 20.95 			
						U24	21.50 - 21.85	 (50)					
						D25	21.85	- (30)			-		
											-		
From 22.5 rare fine grave	0m: Becoming increasingly sandy with el size selenite crystals.				-	D26	22.50 - 22.95	- S38 	S	22.50 - 22.95 - - - -	· · · · · · · · · · · · · · · · · · ·		
						U27	23.50 - 23.95	- - - - (55)					
					- - -	D28	23.95			-	-		
						-					-		
From 24.5	0m: Becoming very stiff.				-	D29	24.50 - 24.95	- S40 - -	S	24.50 - 24.95 - - -			
					-								
						U30	25.50 - 25.95	- (65) -		-			
From 25.9 sand (0.1 x 0.	5m: With occasional pockets of fine 2m) and sand partings.					D31	25.95						
From 26.5	0m: Becoming less sandy.				-	D32	26.50 - 26.95	- S42 - -	S	26.50 - 26.95 - - -			
						U33	27.50 - 27.95	 (70)					
From 27.8	5m: With increasing partings of fine				- - -	D34	27.95	-					
sand. At 28.00m	: Grey claystone recovered as angular fine to coarse sand and gravel size					D35	28.00	- - -		-			
fragments.	-			28.80	- - - 14.41	D36	28.50 - 28.95	- S44 -	S	28.50 28.95 - 			
fine to coarse	very sandy CLAY with white angular gravel size selenite crystals. AY FORMATION)			20.00	- -			- - - -					
						U37 D38	29.50 - 29.85 29.85	(70)					
				-	<u> </u>	000	20.00	Form		ARIAL CP LOO] G		
See h	oths in metres, all diameters in millimet eader sheet for details of boring, progra	ess and water						Version		3.08			
	S. See legend sheet for key to symbols.									00/00/000-			

Norwest Holst Soil Engineering Ltd. BOREHOLE LOG - CABLE PERCUSSION

D39

U40

D42

U43

D44 33 95

D45

34.50

-20.11

30.50 - 30.95

31.50 - 31.90

32.50 - 32.95

33.50 - 33.95

34.50 - 34.95

D41 31.90

S45

(75)

S48

(80)

S50

Hole ID. BH01 Sheet 4 of 6

> 30.50 30.95

> 32.50 32.95

34.50 -34.95 -

s

s

S

F15001 Cable Percussion Contract No. Method Coordinates 5832703.82 E NM Rothschild Bank Project 180999.52 N 14.39m OD **Drilling Rig** Dando 2000 Ground Level Orientation Client Stanhope plc Driller Vertical MH Date Started 25/08/2007 Logged by IM Date Completed 26/08/2007 Consultant Arup Geotechnics Depth Datum SPT N & SPT type Install-Legend Below Sampling Description of Strata Level (U blows) & depth ation G.L.

--- From 30.50m: Selenite crystals becoming fine gravel size.

Very stiff grey CLAY with white fine gravel size selenite crystals. (LONDON CLAY FORMATION)

Remaining Detail : 29.85m - 29.85m : --- From

29.85m: Becoming slightly sandy.

NOR

	I -I-I-I	L			_			-	
		-	U46	35.50 - 35.90	_	(85)		-	-
		-	D47	35.90	_			-	-
From 35.90m: With partings of fine brown sand.									•
		-	D48	36.50 - 36.92	- - -\$50/	/285mm	s	36.50 36.94-	•
From 36.50m: With occasional angular coarse gravel of claystone.		-			-			36.94-	-
		- -			-				-
			U49	37.50 - 37.80	Ē	(85)		-	
		-		37.80		(00)		-	-
		-						-	-
			554	00.50.00.01	-	055	0		-
Very stiff grey CLAY. (LONDON CLAY FORMATION)	38.50	24.11 -	D51	38.50 - 38.91	-550/ - -	/255mm	S	38.50 - 38.91 -	-
									-
		-			-			-	-
		-	U52	39.50 - 39.90	-	(95)		-	-
		-	D53	39.90	_			-	-
NOTES: All depths in matrixs, all diameters in millimeters						Form		ARIAL CP LO	G
NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water						Version		3.08	

See header sheet for details of boring, progress and water strikes. See legend sheet for key to symbols.

Revised

^{3.08 29/03/2006}

Norwest Holst Soil Engineering Ltd. BOREHOLE LOG - CABLE PERCUSSION језт 🗘

Cable Percussion

Coordinates

Method

NORL

Contract No.

-01

5

F15001

Hole ID. **BH01** Sheet 5 of 6

5832703.82 E

Project	NM Rothschild Bank	Drilling Rig		e Fercu lo 2000			round Level	18099 14.39	2 N		
Client	Stanhope plc	Driller Logged by	MH			0	rientation ate Started	Vertic 25/08	al		
Consultant	Arup Geotechnics					Da	ate Completed	26/08	/200)7	
	Description of Strata		Legend	Depth Below G.L.	Datum Level		Sampling	SPT N & (U blows)		SPT type & depth	Install- ation
Remaining De 39.90m: With	etail : 39.90m - 39.90m : From a partings of light grey fine sand.				-			-		-	
sand and san gravel size se	y CLAY with abundant pockets of fine id partings and frequent white fine elenite crystals. LAY FORMATION)			40.50	26.11 - - - -	D54	40.50 - 40.90	- S 55/255mm - - - -	S	40.50 40.91	
(LONDON OF					-	U55	41.50 - 41.85	- - - - (100)			
				41.85	- - 27.46		41.85			-	
Very stiff grey (LONDON CI	y sandy CLAY. LAY FORMATION)				- - -			- - -			
From 42.5	i0m: Becoming increasingly sandy.				-	D57	42.50 - 42.85	- S 50/230mm 	S	42.50 42.88	
					- - -			- - -			
						U58	43.50 - 43.95	(110) 		-	
						D59	43.95	- 			
					-	D60	44.50 - 44.90	_ - S 50/255mm _	S	44.50 44.91	
					-			- - -			
At 45.5m:	Becoming hard.				-	U61	45.50 - 45.85	(110)		-	
x 0.05m) and	y CLAY with pockets of fine sand (0.1 sandy partings. LAY FORMATION)			45.85	31.46 	D62	45.85	- - -			
	i0m: Becoming less sandy.				-	D63	46.50 - 46.88		S	46.50 46.89	
					- 			- - -			
					- - -	U64	47.50 - 47.90	(120)		-	
From 47.9	00m: Becoming increasingly sandy.				- - 	D65	47.90	- - 			
					-			-		-	
					-	D66	48.90 - 49.50		s	48.90 49.30	
					_			- - -		-	
					-			-		-	
NOTES: All der	oths in metres, all diameters in millime	tres.						Form		ARIAL CP LO	3
See h	eader sheet for details of boring, progr	ess and water						Version		3.08	
SUIKES	s. See legend sheet for key to symbols							Revised		29/03/2006	

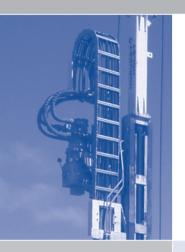
Norwest Holst Soil Engineering Ltd. BOREHOLE LOG - CABLE PERCUSSION NORWEST

Cable Percussion

Coordinates

Method

HOLST

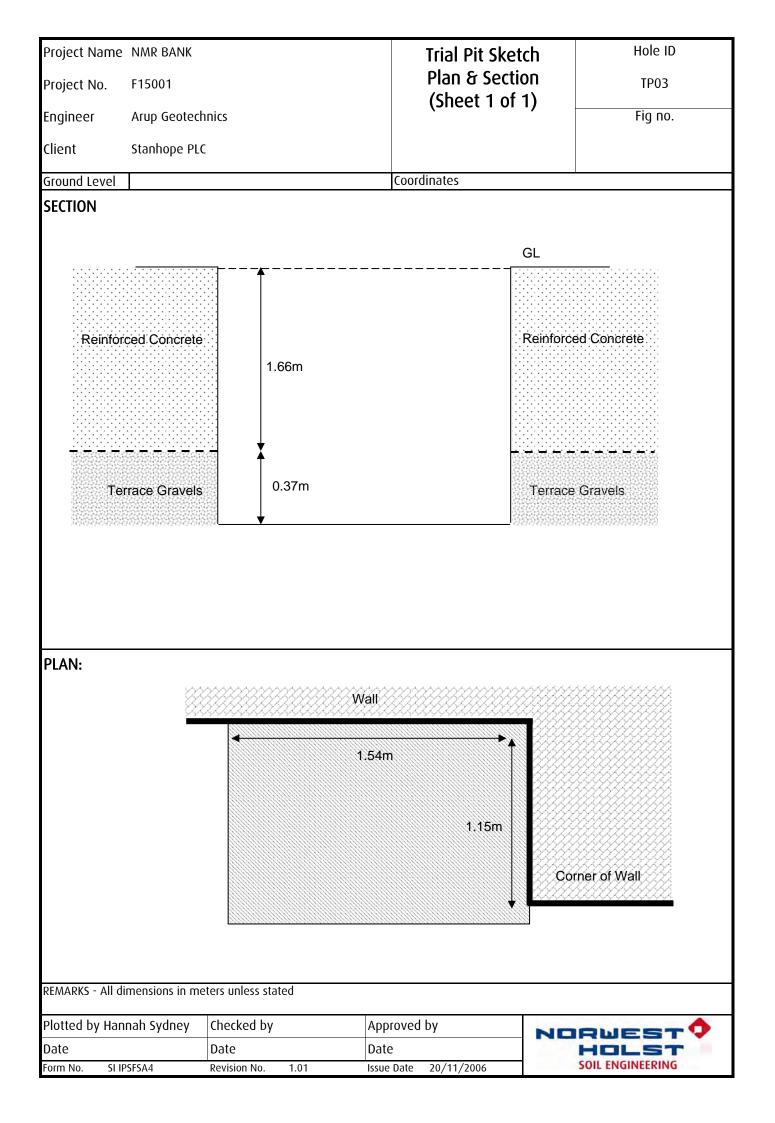

F15001

Contract No.

Hole ID. **BH01** Sheet 6 of 6

5832703.82 E

Contract M Project Client Consultar		F15001 NM Rothschild Bank Stanhope plc Arup Geotechnics	Method Drilling Rig Driller Logged by		e Percu lo 2000		Coordinates Ground Level Orientation Date Started Date Completed		5832703.82 E 180999.52 N 14.39m OD Vertical 25/08/2007 26/08/2007				
		Description of Strata		Legend	Depth Below G.L.	Datum Level		Sampling	SPT N & (U blows)		SPT type & depth	Install- ation	
Very sti x 0.05n	tiff grey (m) and s	CLAY with pockets of fine sand (0.1 andy partings. Y FORMATION)				-			 - -		-		
Very sti green,	iff grey, friable sa	greenish grey, brown, blueish andy CLAY.			50.50	- 36.11 - -	D67 U68	50.50 50.70 - 51.05	 (100)				
Very de	ETH GR ense gre ETH GR	yish brown fine SAND. OUP - SAND CHANNEL)			51.00	36.61 - -	D69	51.40		s	51.40 51.68		
Very sti CLAY.		nish grey, blue, green very sandy			51.70	- 37.31					51.68-		
(LAMB	ETH GR				52.30	- - 37.91	UF D70	52.00 52.30	 	s	52.30 - 52.61 -		
	Percussi	on boring complete at 52.30 m.											
NOTES:	All depth	ns in metres, all diameters in millime	tres.								ARIAL CP LOC 3.08	3	
		ader sheet for details of boring, progr See legend sheet for key to symbols							Version		3.08 29/03/2006		


SUPPORTING FACTUAL DATA SECTION B Exploratory Hole Records and Field Data

INSPECTION PIT / TRIAL PIT / TRIAL TRENCH RECORDS

Hole ID. Norwest Holst Soil Engineering Ltd. NORWES **TP03** TRIAL PIT LOG Sheet 1 of 1 Contract No. F15001 Method Hand Excavated Coordinates NM Rothschild Bank Project Equipment Breaker Ground Level Client Stanhope plc Date Started 15/10/2007 Date Completed 15/10/2007 Logged by IM Consultant Arup Geotechnics Depth Datum Description of Strata Legend Below Sampling Remarks Level G.L. CONCRETE: Reinforced concrete with 30mm and 15mm re-bar. --- At 0.92m: Re-bar. 1.66 SAND and GRAVEL (RIVER TERRACE DEPOSITS) ES1 ES2 2.00 2.00 2.03 Trial pit complete at 2.03 m. Stability Good Sketch Plan of Trial Pit Α 1.54m Shoring **D** 1.15m в С \geq Groundwater Standing at 1.5m Bearing Remarks 1. Trial pit located in basement, in old archive office. 2. All depth measurements relative to basement floor level. 3. Trial pit excavated by McGees. 4. 2 x Environmental Samples taken at 2.0m (A & B) consists of 1x plastic tub, 1x vial and 1 x 250ml glass jar. ARIAL TP LOG Form NOTES: All depths in metres, all soil strengths in kPa. See legend sheet for key to symbols and abbreviations. Version 3.05 All bearings given relate to magnetic North Revised 15/02/2006

SUPPORTING FACTUAL DATA SECTION B Exploratory Hole Records and Field Data

GROUNDWATER / GAS MONITORING / SAMPLING RESULTS

me NM Rothschild Bank F15001 Arup Geotechnics	Groundwater Inflow Recorded In Exploratory Holes	S Table no.
Stanhope Plc		01
ry Depth of Rate of Inflow Level After 20mins	Type of Stratum	Comments/Observations
(m) (m) 51.00 Fast 44.00	London Clay	
		NORWEST
SI EHGWI Revi	ision No. 3.01	

Project Name	NM F	Rothschild BA	NK		Gro	oundwater		S			
Project No.	F150	01				For Install	ations				
Engineer	ARUF	P GEOTECHNICS							Fig	NO.	
Client	STAN	HOPE PLC							0	2	
NOTES:	For n		ations, record p			s PZ1, piezomet pr standpipes =					
COMMENTS						und Floor Slab S		<u> </u>			
			Installation			Recorde	d Water Lev	el (r	n)		
Exploratory Ho	le ID	Installation Type	Depth (m)	Date 31/08/2		Date 07/09/2007	Date		Date 18/10/2007	Date 15/11/2007	
BH01		SP	6.00	4.79		4.77	4.77	07	4.83	4.69	
Recorded by:		Che	cked by:		Add	roved by:					
Date:									HOLST		
	Date: Date: SI GWR Revision No. 2.02 Issue Date 10/07/2006								SOIL ENGIN		

Project Name NM	ROTHSCHIL	D BANK				Record O	f Gas	Hole	e ID				
Project No. F15	001					Monitor	ring	BH01					
Engineer ARU	IP GEOTECHI	NICS						Fig	NO.				
-	NHOPE PLC							03					
		int 00	0	vahala CM					5				
Notes Type of S	ampling Po					is Well, HS = He ter, S = Spike F		lysis					
	d Gas State:					e Value, CF=Cir er valve (LV) v		alue, NR = Not	Recorded				
Well Type		3, 10000	аррет чан	SP / 50m				i y					
Depth to base of installat	ion		mbgl	6.0m									
Measured Parameter	Units	Detection Limit	Ambient Level										
Monitoring round no.	N/A	N/A	N/A		1	2	3	4	5				
Date	dd/mm/ yyyy	N/A	N/A	31/08/20	007	07/09/2007	17/09/2007	18/10/2007	15/11/2007				
Time of initial reading	hh:mm	N/A	N/A	13:25		14:00	15:30	11:30	09:40				
Water Level	mbgl	0.01	N/A	4.79		4.77	4.77	4.83	4.69				
Measured Gas State	N/A	N/A	N/A	SS		SS	SS	SS	SS				
Atmospheric pressure	mb	1		1017		1026	1007	1029	1018				
Relative pressure	mb	1		0		0	0	0	0				
CH ₄ : (LEL) Steady State	%	1		0		0	0	0	0				
CH₄: (LEL) Peak	%	1		0		0	0	0	0				
CH₄: Steady Sate	% v/v	0.1		0.0		0.0	0.0	0.0	0.0				
CH₄: Peak	% v/v	0.1		0.0		0.0	0.0	0.0	0.0				
CO ₂ : Steady State	% v/v	0.1		0.0		0.0	0.0	0.0	0.0				
CO ₂ : Peak	% v/v	0.1		0.0		0.0	0.0	0.1	0.2				
0 ₂ : Steady State	% v/v	0.1		20.4		20.3	20.3	19.6	20.0				
0 ₂ : Peak	% v/v	0.1		20.5		20.3	20.4	20.0	20.0				
CO: Steady State	ppm	1		0		0	0	0	0				
CO: Peak	ppm	1		1		0	0	0	0				
H ₂ S: Steady State	ppm	1		0		0	0	0	0				
H ₂ S: Peak	ppm	1		0		0	0	0	0				
Gas Flow	l/hr	0.1		0.0		0.0	0.0	0.0	0.0				
PID	ppm	1		NR		NR	NR	NR	NR				
FID	ppm	1		NR		NR	NR	NR	NR				
Weather Conditions:	DRY												
Equipment Used (list):	GA2000												
Equipment Last Calibrated	d (respective t	o list above)):										
Comments													
Monitored By: JD													
Date:								HOL					
Form No. SI GN	1	Revision No	. 2.02		lssue (Date 30/10/20	006	SOIL ENGINI					

SUPPORTING FACTUAL DATA SECTION C Laboratory Testing

KEY TO LABORATORY TEST RESULTS

COMMON TO ALL SUMMARIES

Sample Type	U	Undisturbed sample	AMAL	Amalgamated sample
	Р	Piston sample	В	Bulk disturbed sample
	TW	Thin walled sample	BLK	Block sample
	L	Liner sample	С	Rock core
	D	Small disturbed sample		
Test status		esult in <i>italics</i> indicates a test that is n itation for this laboratory.	ot withi	n the scope of the UKAS

SUMMARY OF LABORATORY SOIL TESTS: INDEX \slash CLASSIFICATION TESTS

Particle density	р	Small pyknometer method g Gas jar method
Plastic index	N/P	Non plastic, although liquid limit will have been determined if requested
Particle size (PSD)	1 P	Following value in silt column denotes combined clay and silt fraction Folowing value in clay column denotes sedimentation by pipette, else sedimentation is by hydrometer.

SUMMARY OF LABORATORY SOIL TESTS: STRENGTH AND PERMEABILITY TESTS

Triaxial	UU UUM UU3 CU CUM CU3 CD CDM CD3 Note th	Single stage unconsolidated quick us Multi stage unconsolidated quick us Set of 3 unconsolidated quick undra Single stage consolidated undrained Multi stage consolidated undrained Set of 3 consolidated undrained Single stage consolidated drained Multi stage consolidated drained Set of 3 consolidated drained at single stage tests are reported assuming phi	ndrained ained d	1
Consol	0ed m _v	One-dimensional oedometer Coefficient of compressibility quoted	Hyd I for p0	
Permeability	C	Constant head permeability	т	Triaxial permeability
Shearbox	SSB P RS	Small shear box Peak value Ring shear	LSB r	Large shear box Residual value

SUMMARY OF LABORATORY SOIL RE-USE TEST

MCV	S	MCV value at natural or specified moisture content
	int	Intercept of calibration line in MCV calibration

SUMMARY OF LABORATORY ROCK STRENGTH TESTS

Point Load	Туре	D	Diametral	A	Axial
	(Combination of)	1	Irregular lump	В	Block
		L	Test performed parallel to planes of	weakn	ess
		Р	Test performed perpendicular to pla	nes of v	weakness
		Х	Invalid failure of point load (not bro	ken bet	tween points of load application)

SUMMARY OF LABORATORY ROCK MATERIALS TESTS

Ten% fines	W	Soaked test	d	Dry test
------------	---	-------------	---	----------

POINT LOAD INDEX RESULT

Point Load	Type (Combination of)	D I L P X	Diametral Irregular lump Test performed parallel to planes Test performed perpendicular to p Invalid failure of point load (not b	lanes of	
Dimensions		W D D'	Diameter of core or average smal in a block or irregular lump Distance between platens when ju Distance between platens at poin	ust in co	
		De	Equivalent core diameter	ls	P/De ²
		ls(50)	F x Is	F	(De/50) ^{0.45}
		For Ax	point load strength index corrected ial/Lump tests De ² = (4/Pi) x (W x ametral tests De ² = D x D'		metral test of core diameter 50mm

Important note:

summary sheets are provided for convenience and in no way replace individual test result sheets which shall, without exception, be regarded as the definitive result.

SUPPORTING FACTUAL DATA SECTION C Laboratory Testing

LABORATORY SOIL TEST SUMMARY SHEETS

Project Name	NM Roth	schild	Banl	<				Classification Tests												
Project No.	F15001									Sur	nm	агу								
Engineer	Arup Geo	techr	nics																	
Client	Stanhope	plc																		
	_			E		itent			ity				E	age	Particle size					
Hole ID	Sample depth m	Sample no.	sample type	Specimen depth m	Specimen no.	Moisture Content	Bulk Density	Dry Density	Particle Density	Liquid Limit	Plastic Limit	Plastic Index	Passing 425µm	Linear Shrinkage	Clay	Silt	Sand	Gravel	Cobbles	
프 포 BH01	5.90	<u>دی</u> 002	в Sa	طح 2.90	ය 01	%	1	Mg∕m	3	%	%		%	%	%	% 01	% 39	% 61	% 0	
	9.00			9.00																
BH01		004	В		01											11	32	67	0	
BH01 BH01	9.55	005	D	9.55	01	28				70	25	45	88		61	36	3	0	0	
BH01	11.95	010	D	11.95	01	28				76	24	52	100							
BH01	15.95	016	D	15.95	01	26				72	23	49	100							
BH01	17.95	019	D	17.95	01										61	38	1	0	0	
BH01	21.85	025	D	21.85	01										49	35	2	14	0	
BH01	23.95	028	D	23.95	01	21				80	29	51	100							
BH01	25.95	031	D	25.95	01										49	46	5	0	0	
BH01	28.00	035	D	28.00	01											6 ¹	2	92	0	
BH01	29.85	038	D	29.85	01	22				62	24	38	100							
BH01	33.95	044	D	33.95	01	25				68	28	40	100							
BH01	35.90	047	D	35.90	01										62	37	1	0	0	
BH01	37.80	050	D	37.80	01	24				74	25	49	100							
BH01	41.85	056	D	41.85	01	23				71	27	44	100							
BH01	43.95	059	D	43.95	01										41	28	30	0	0	
BH01	45.85	062	D	45.85	01	25				72	25	47	100							
BH01	47.90	065	D	47.90	01										39	32	29	0	0	
BH01	50.50	067	D	50.50	01	14				38	15	23	100							
Approved by: Stuart Kirk Revision No. 2.01 Issue Date												03/10/ 006	2007	Z	1			5'		>

Project Name	NM Roths	child	Banl	<				(las	sific	atic	n T	ests	5						
Project No.	F15001										nm									
Engineer	Arup Geo	techr	nics																	
Client	Stanhope	plc																		
				E		ent			٨				_	дe		Par	ticle	size		
Hole ID	Sample depth m	sample no.	Sample type	Specimen depth m	Specimen no.	& Moisture Content	Bulk Density	av Density س	" Particle Density	& Liquid Limit	% Plastic Limit	Plastic Index	% Passing 425µm	& Linear Shrinkage	& Clay	% Silt	% Sand	& Gravel	s Cobbles	
	52.30	<u>م</u> 070	D	<u>م</u> 52.30	∽ 01	-70	I	//y/ III	-	-70	-70		-70	-70	36	50	15	0	0	
							End													-
Approved by:			Leed	s Laborate	bry															
Approved by: Stuart Kirk			reed		лy					Print da	ite	03/10/	2007	Z						>
			Revisi	on No.	2.01			Issue			/07/2		2007			SOIL E				

Project Name		hild B	ank			Do			th ar		201						
Project No.	F15001					Pe	imea	JUIII	y Su	111116	эгу						
Engineer	Arup Geote	echnic	S														
Client	Stanhope	plc															
				c		ent			Triaxial		Cor	nsol	Perme	eability	1	Shearbo	x
Hole ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.	& Moisture Content	Wg/m ³	Type	c kPa	Ø	Type	m _v m²/MN	Type	K m/s	Type	c kPa	Ø
BH01	9.60	006	U	9.70	1	29	1.98	UU	121	0	<u> </u>	,		, 5			
BH01	11.50	009	U	11.50	1	29	3.65	UU	88	0							
BH01	13.50	012	U	13.52	1	27	2.00	UU	101	0							
BH01	15.50	015	U	15.55	1	27	2.04	UU	109	0							
BH01	17.50	018	U	17.51	1	28	2.01	UU	132	0							
BH01	19.50	021	U	19.55	1	28	1.93	UU	127	0							
BH01	21.50	024	U	21.61	1	28	2.00	UU	91	0							
BH01	23.50	027	U	23.53	1	29	1.98	UU	123	0							
BH01	25.50	030	U	25.55	1	28	1.99	UU	142	0							
BH01	27.50	033	U	27.52	1	23	2.11	UU	266	0							
BH01	29.50	037	U	29.65	1	23	2.10	UU	249	0							
BH01	31.50	040	U	31.58	1	20	2.03	UU	282	0							
BH01	33.50	043	U	33.55	1	26	2.03	UU	221	0							
BH01	35.50	046	U	35.57	1	26	2.00	UU	155	0							
BH01	37.50	049	U	37.70	1	27	1.95	UU	256	0							
BH01	39.50	052	U	39.63	1	25	2.00	UU	169	0							
BH01	41.50	055	U	41.62	1	25	1.97	UU	183	0							
BH01	43.50	058	U	43.55	1	25	1.96	UU	243	0							
BH01	45.50	061	U	45.61	1	24	1.97	UU	341	0							
								End									
Approved by: Stuart Kirk		Revisio		2.01	/		ue Date		Print date 08/08		/10/2007	Z	E F		_5	T	>

CHEMICAL ANALYSIS

ecãs

Project:	NM R	othsch	ild Ba	nk						C	Contra	ct no.	F150	01			
SO₄ SO₄ Note: ORG	w g	Ground SO₄ de	l water : rived by	sulfate c sulfate c y multipl r conten	content content ying SO	O ABBREVIATIONS ₃ by 1.2	AND NOME NO3 pH CI w CI g	Nitrate Detern Water	conten ination soluble	of pH v chloride							
Hole ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.	Descripti	on	SO4 (g/l) w	SO₄ (g/l) g	ORG (%)	NO ₃ (g/l)	Hd	CI (g/l) w	Cl (mg/l) g	< 2mm (%)		
BH01	13.95	13	D			Greyish CLAY		0.46				7.9			97		
BH01	19.95	22	D			Brown CLAY		0.34				8.1		·	98		
BH01	27.95	34	D			Greyish CLAY				1.7					99		
BH01	31.90	41	D			Greyish CLAY		0.49				7.8			99		
BH01	39.90	53	D			Greyish CLAY		1.08				7.6			96		
			, ,		A	-		·									
						-											
													•				
													·				

ECoS Environmental Limited Low Moor Business Park, Common Road, Bradford, BD12 0NB Tel. 01274 691122 Fax. 01274 608100 e-mail: info@ecos.co.uk

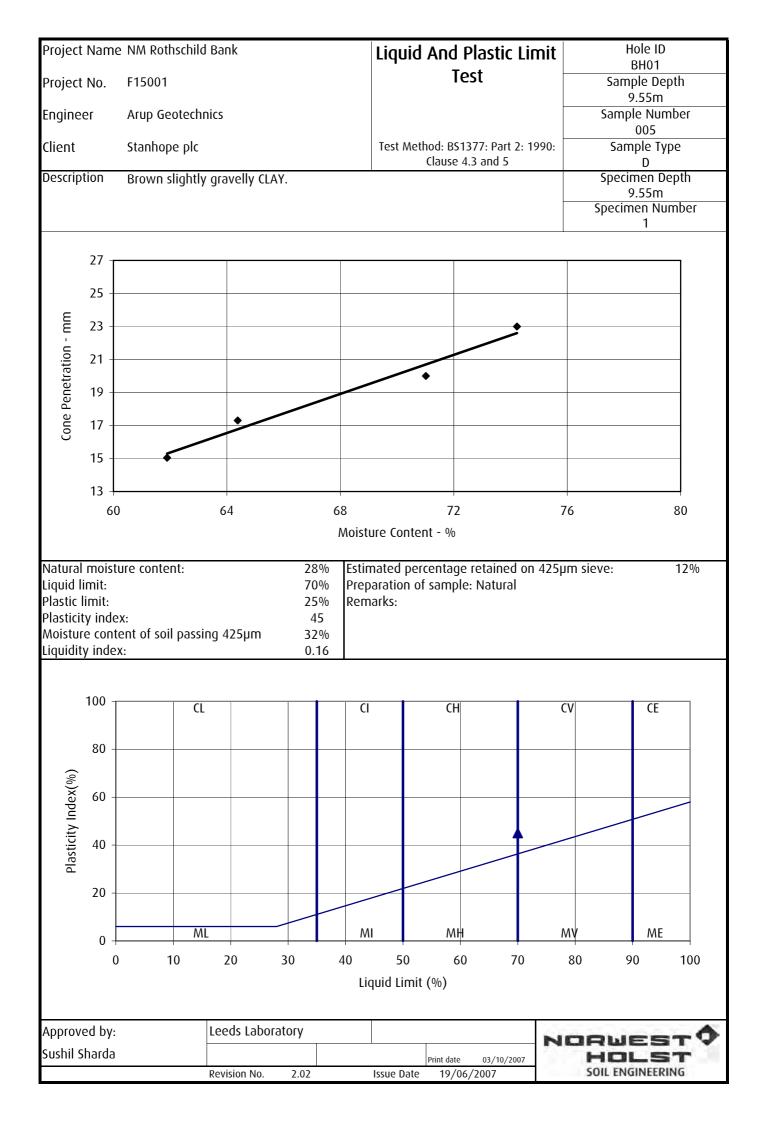
CHEMICAL ANALYSIS

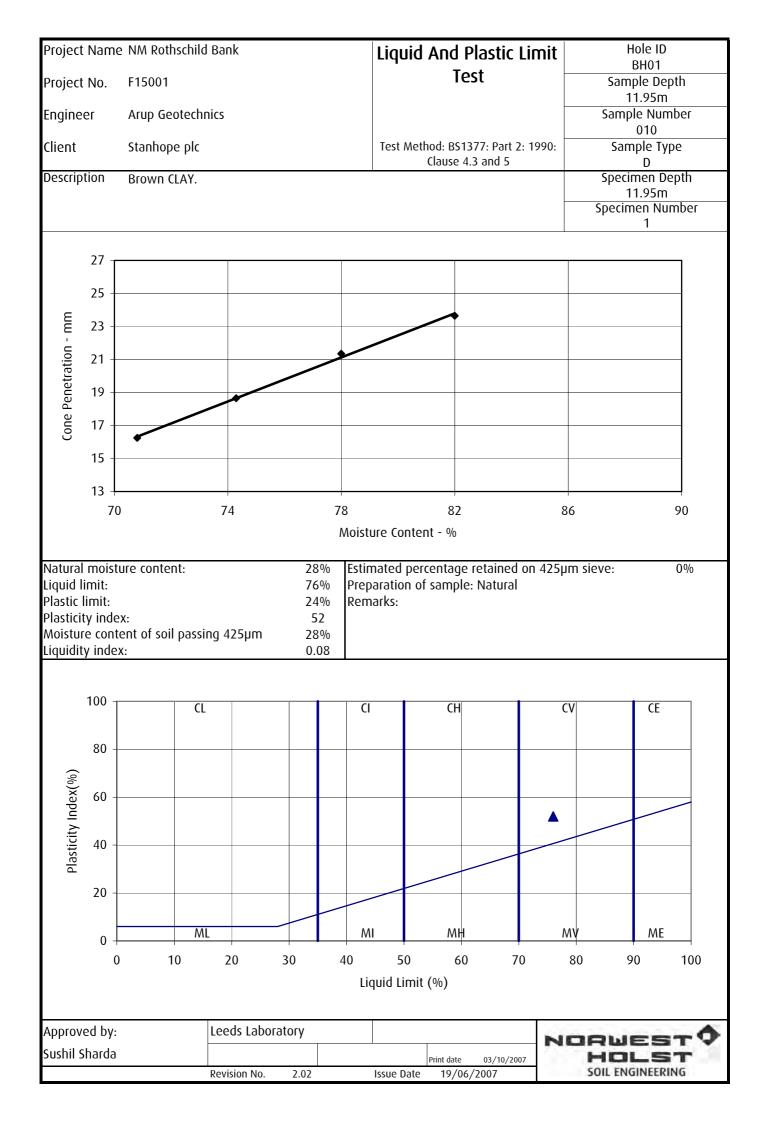
Contract no. F15001

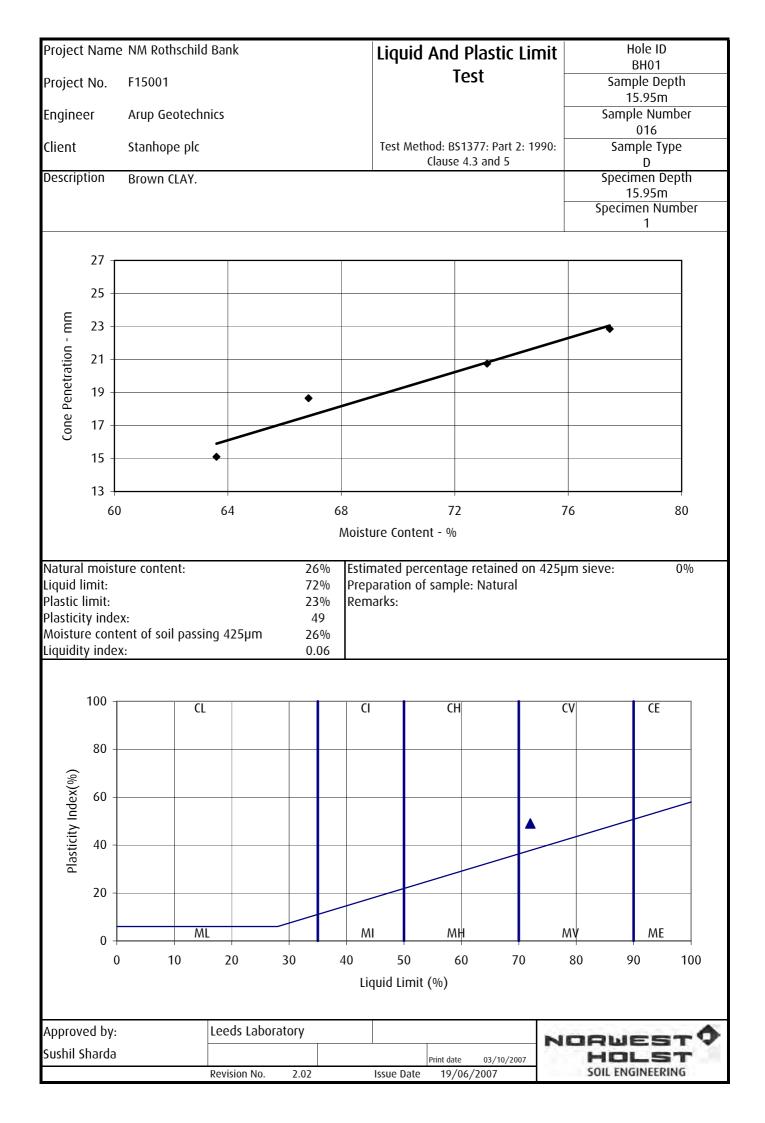
ECõS

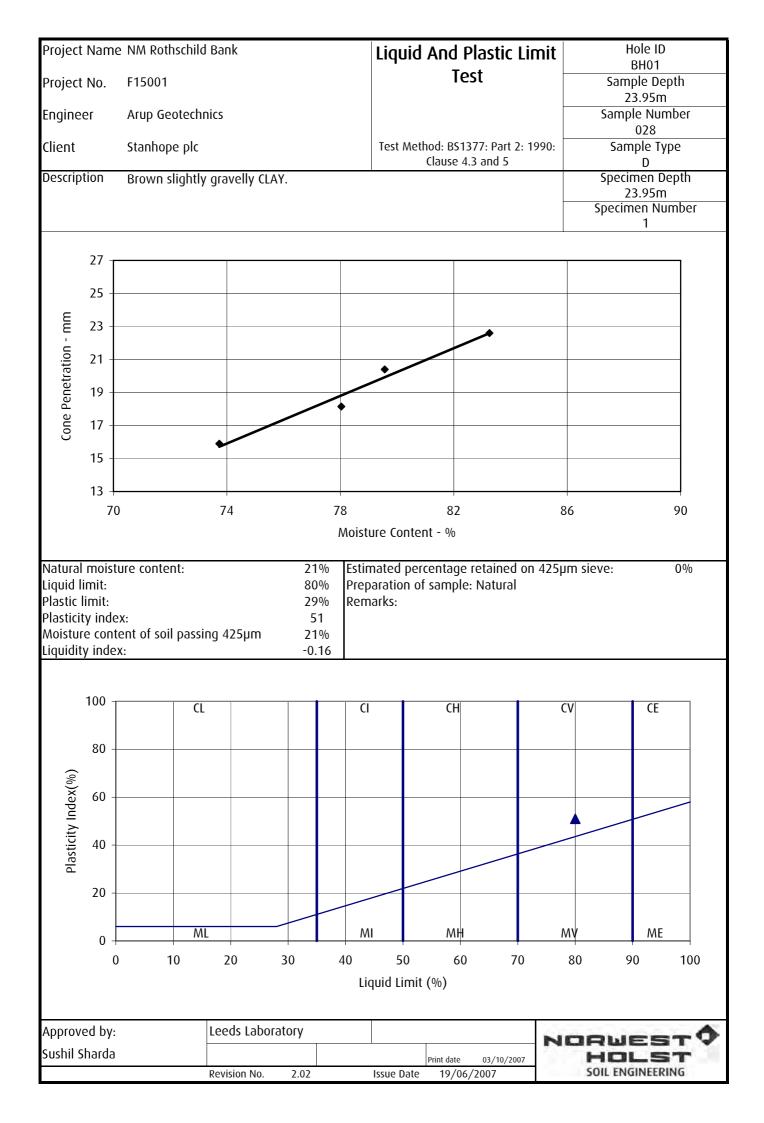
Project:	Project: NM Rothschild Bank Contract no. F15001 KEY TO ABBREVIATIONS AND NOMENCLATURE															
-	g	Water so Ground [•] SO₄ deri Organic	water s ived by	ulfate co ulfate co multiply	ontent ontent ving SO ₂		AND NOME NO3 pH CI w CI g	3 Nitrate content 1 Determination of pH value w Water soluble chloride content								
Hole ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.	Descripti	SO4 (g/l) w	SO4 (g/l) g	ORG (%)	NO ₃ (g/l)	Hd	Cl (g/l) w	CI (mg/l) g	< 2mm (%)		
DH01	5.50 - 5.90	01	в			Brown SAND				<0.1	-				52	
BH01	7.50 - 7.95	03	В			Gravelly SAND		<0.1				8.1			10	

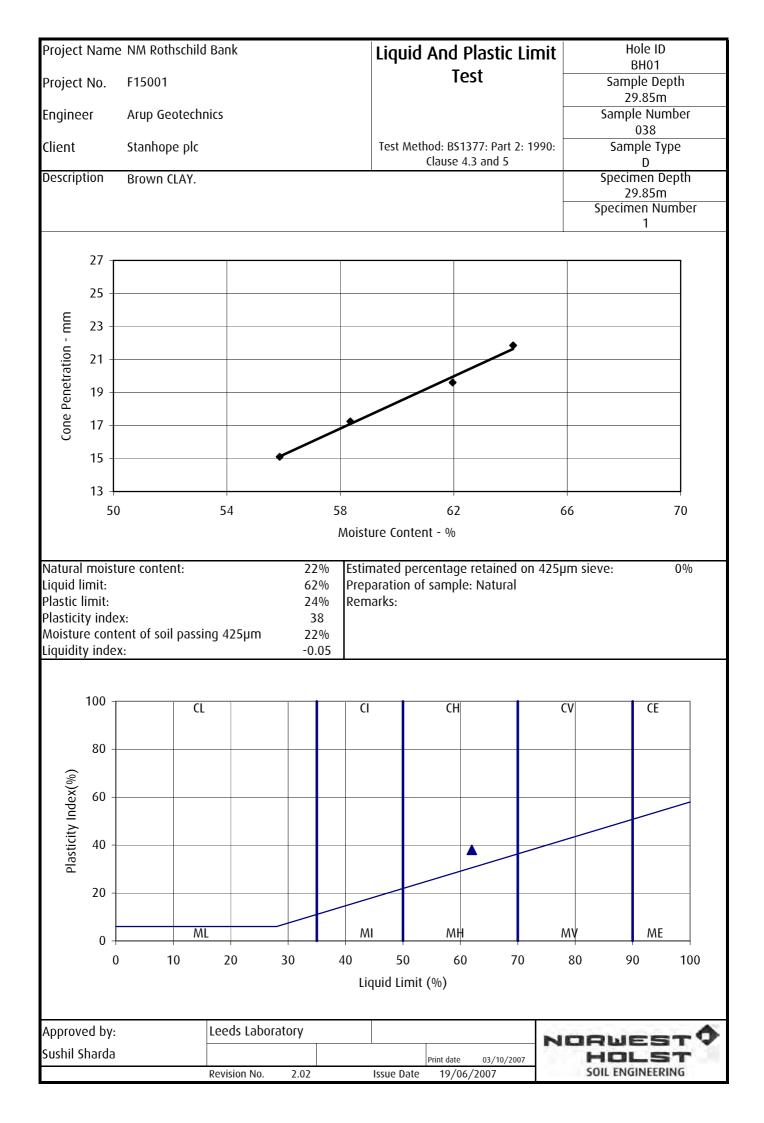
ECoS Environmental Limited × Low Moor Business Park, Common Road, Bradford, BD12 0NB Tel. 01274 691122 Fax. 01274 608100 e-mail: info@ecos.co.uk

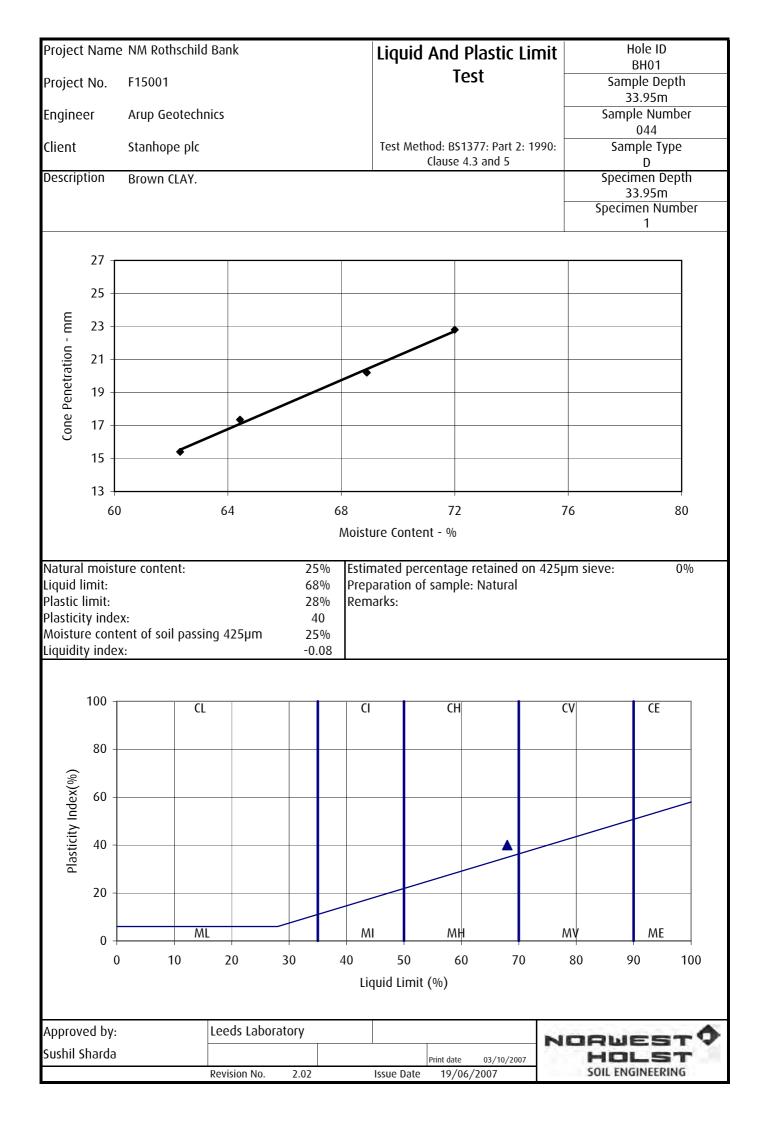


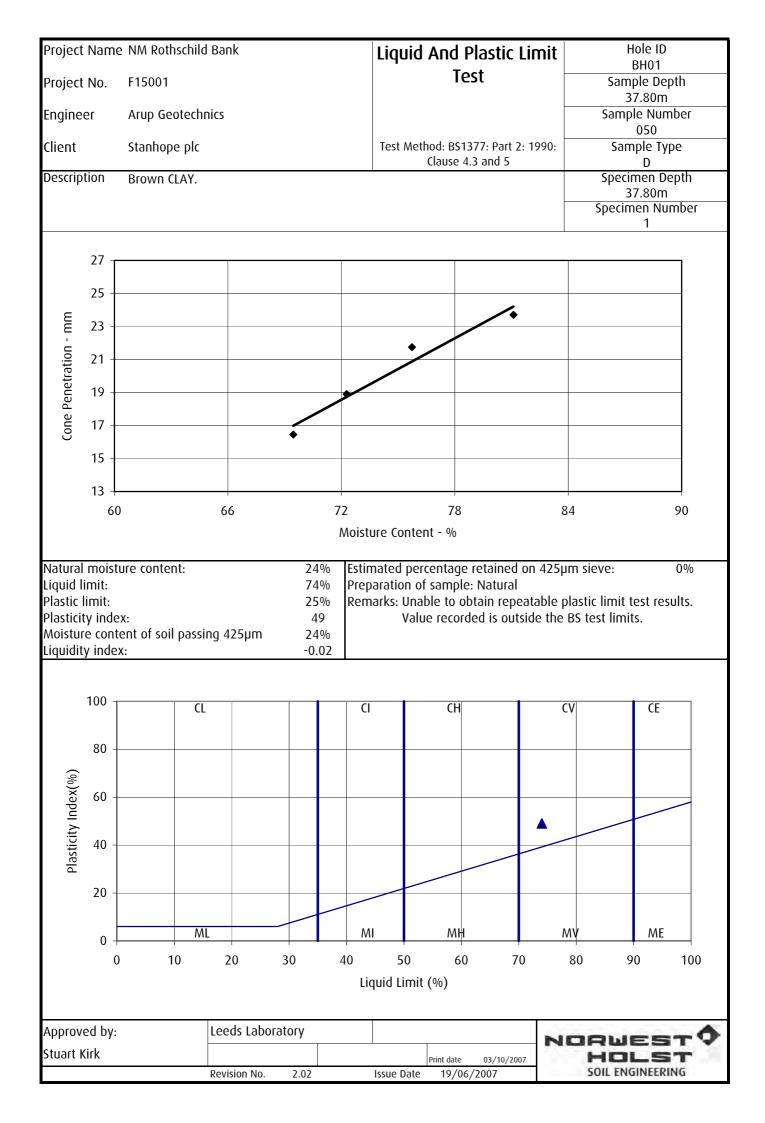

SUPPORTING FACTUAL DATA SECTION C Laboratory Testing

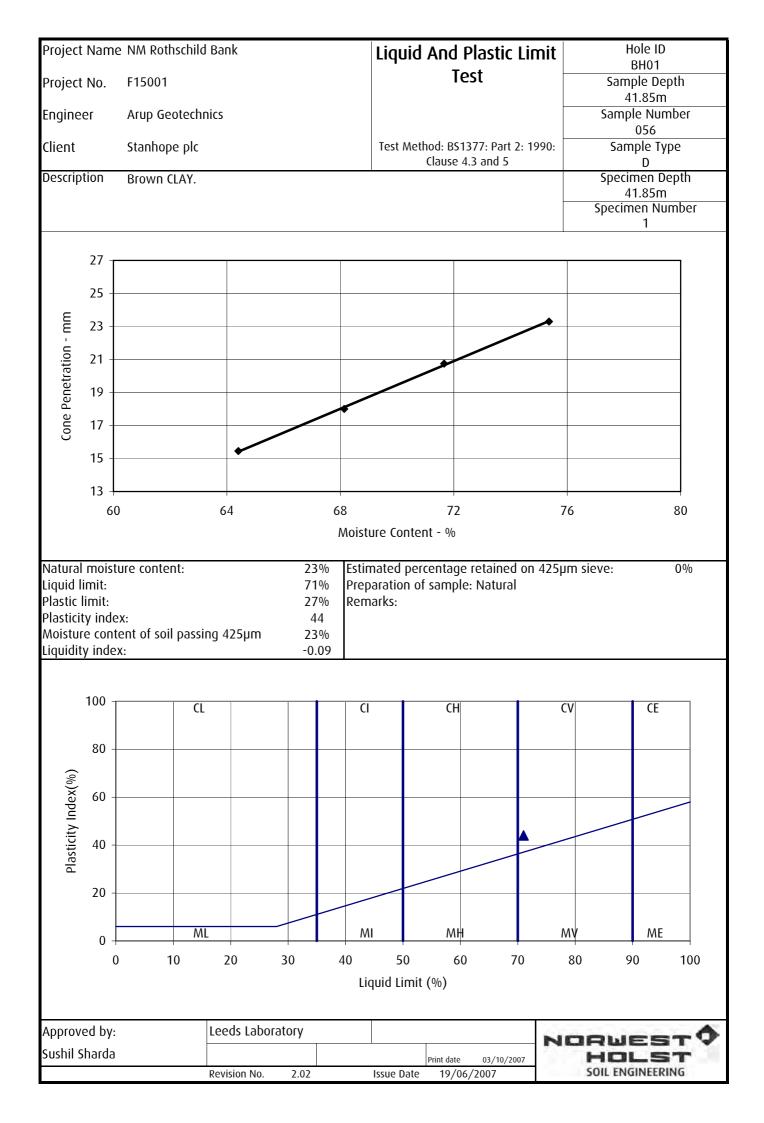

LABORATORY SOIL TEST DATA SHEETS

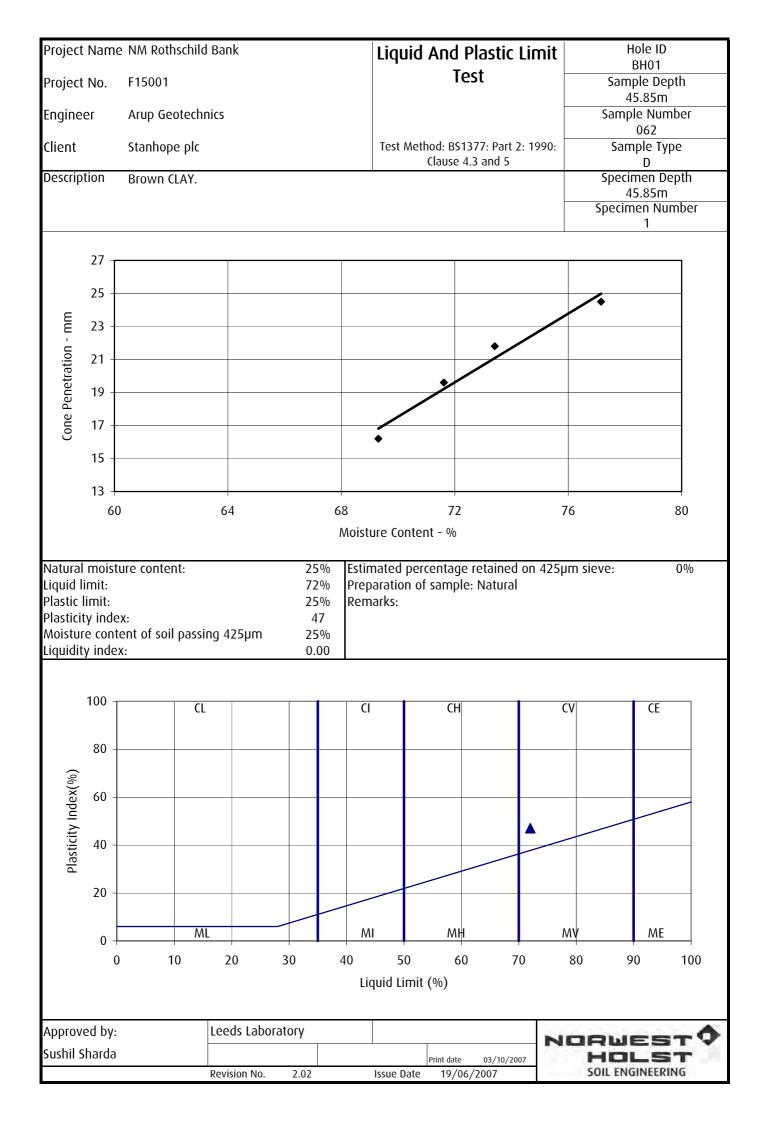


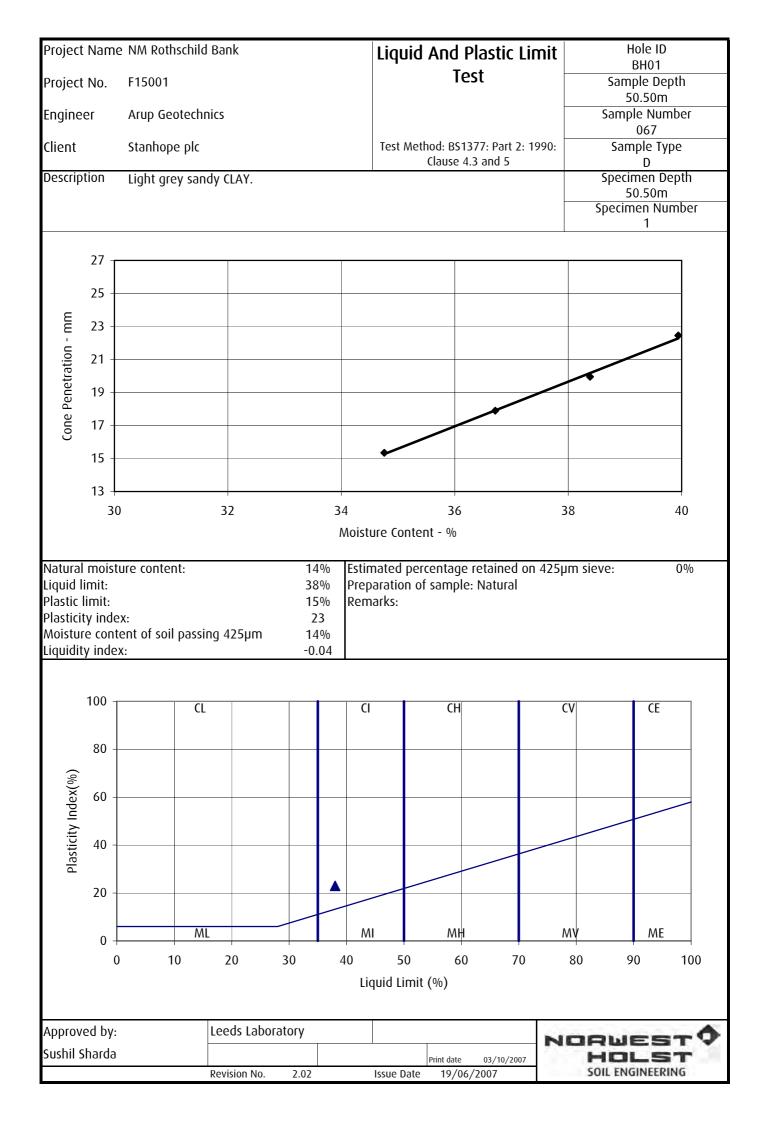


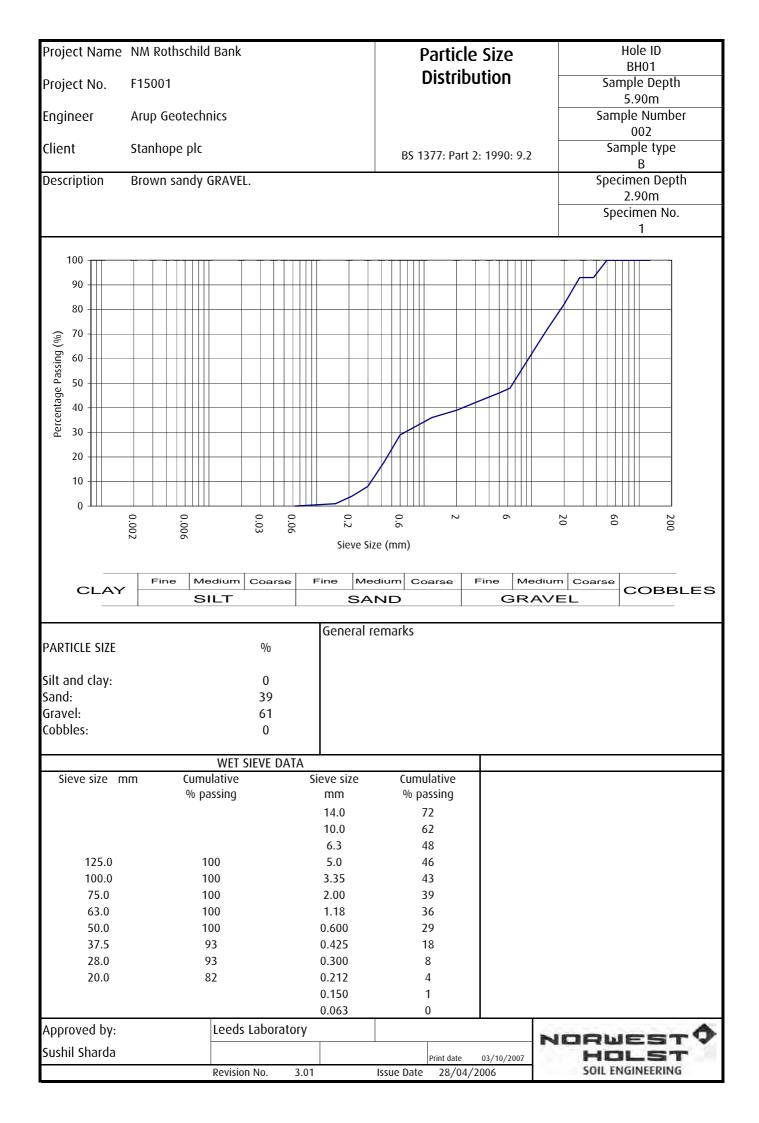


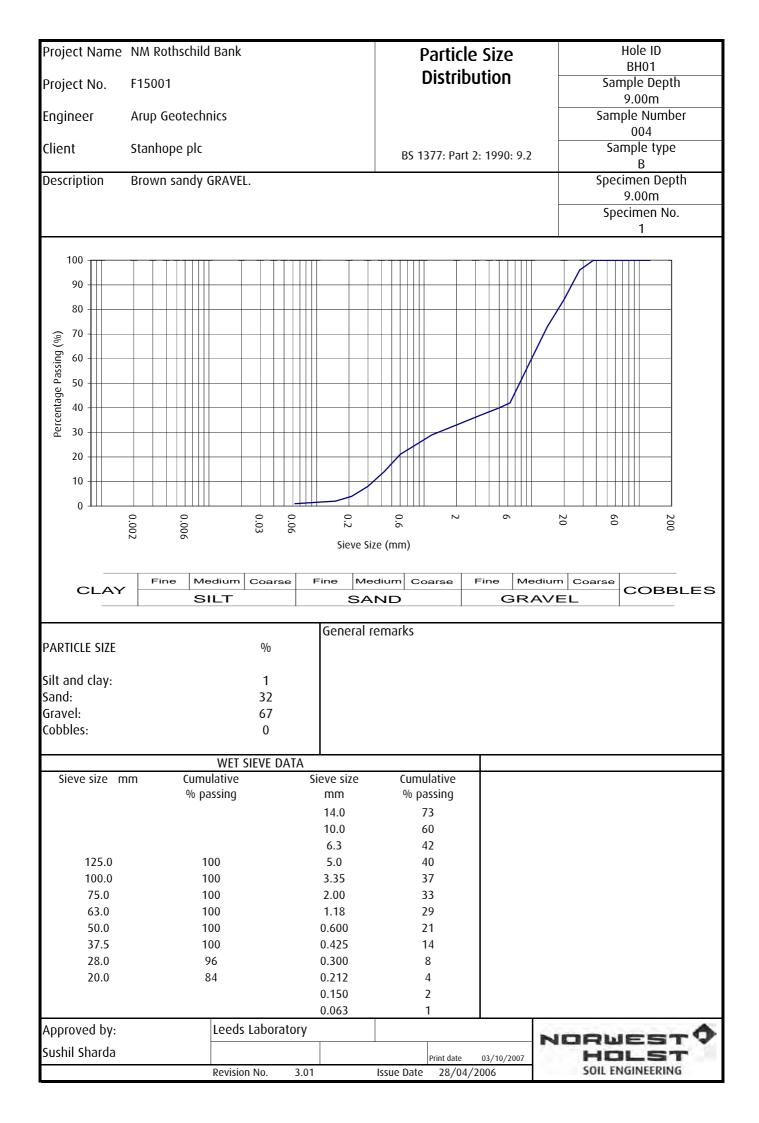


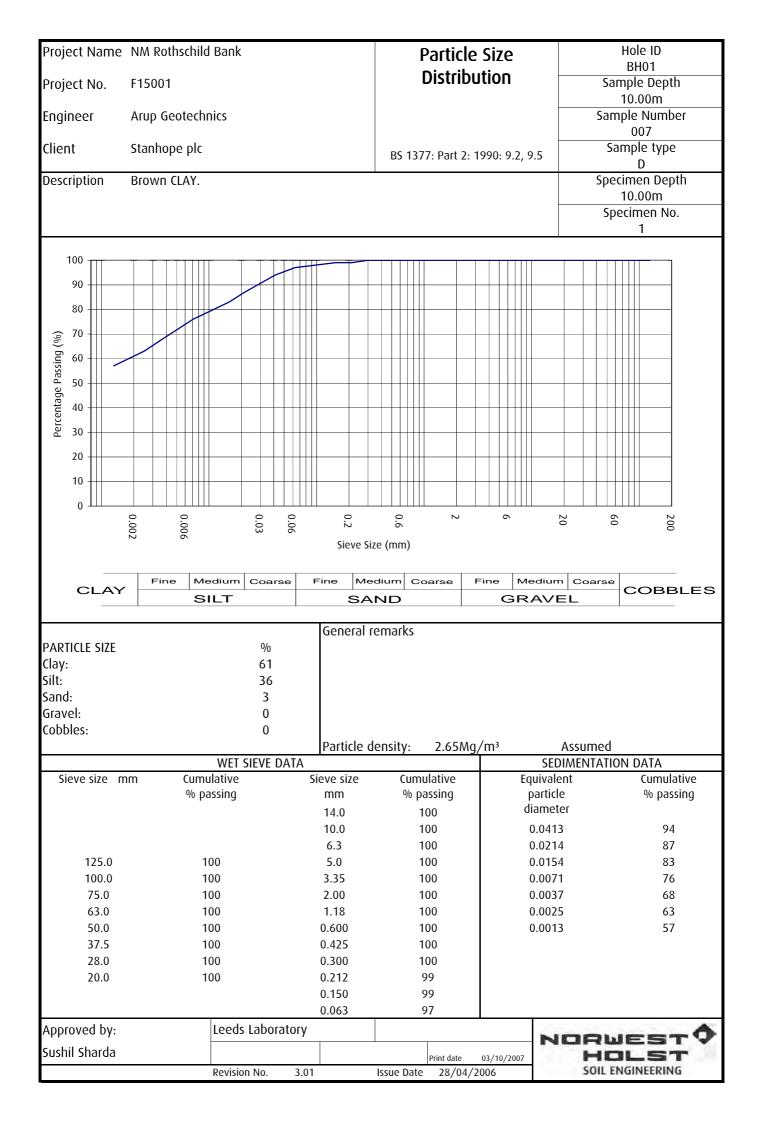


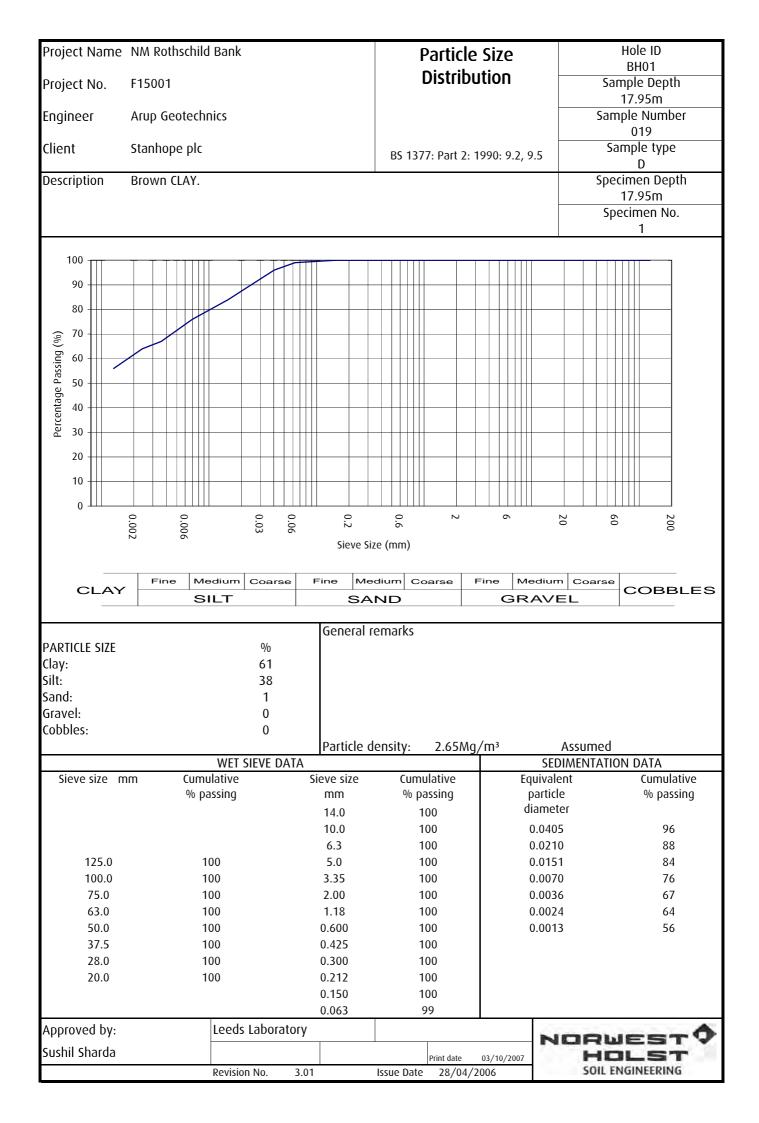


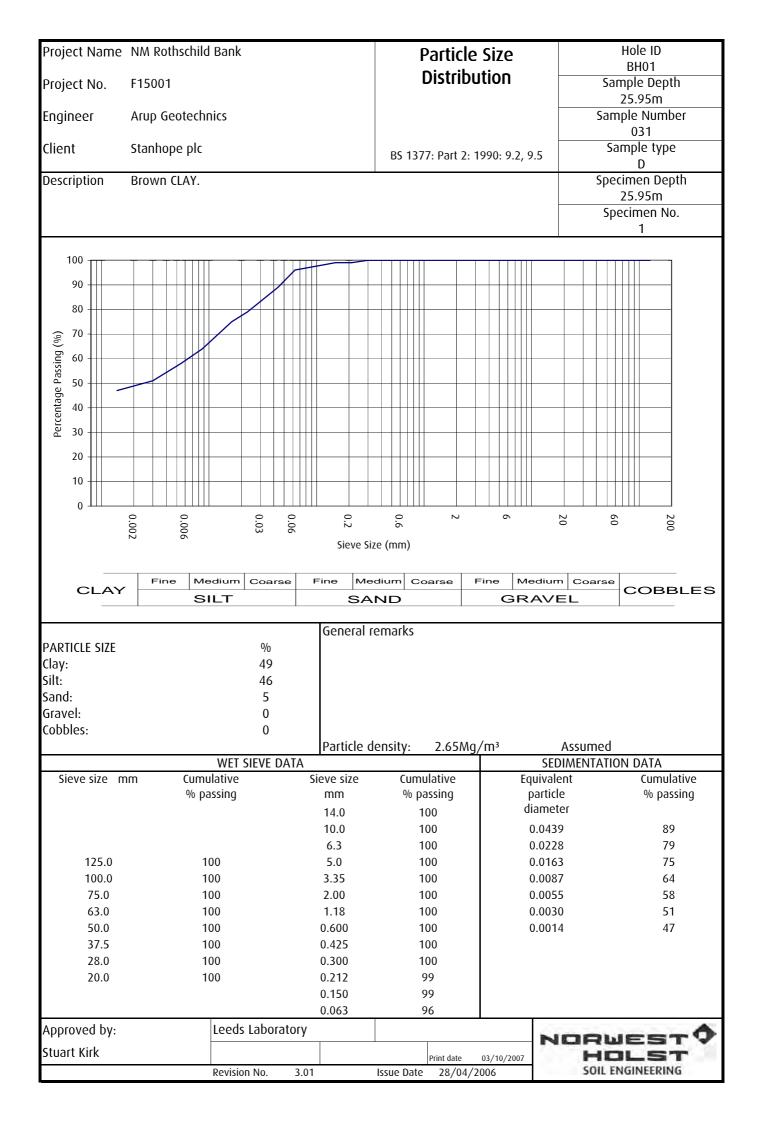


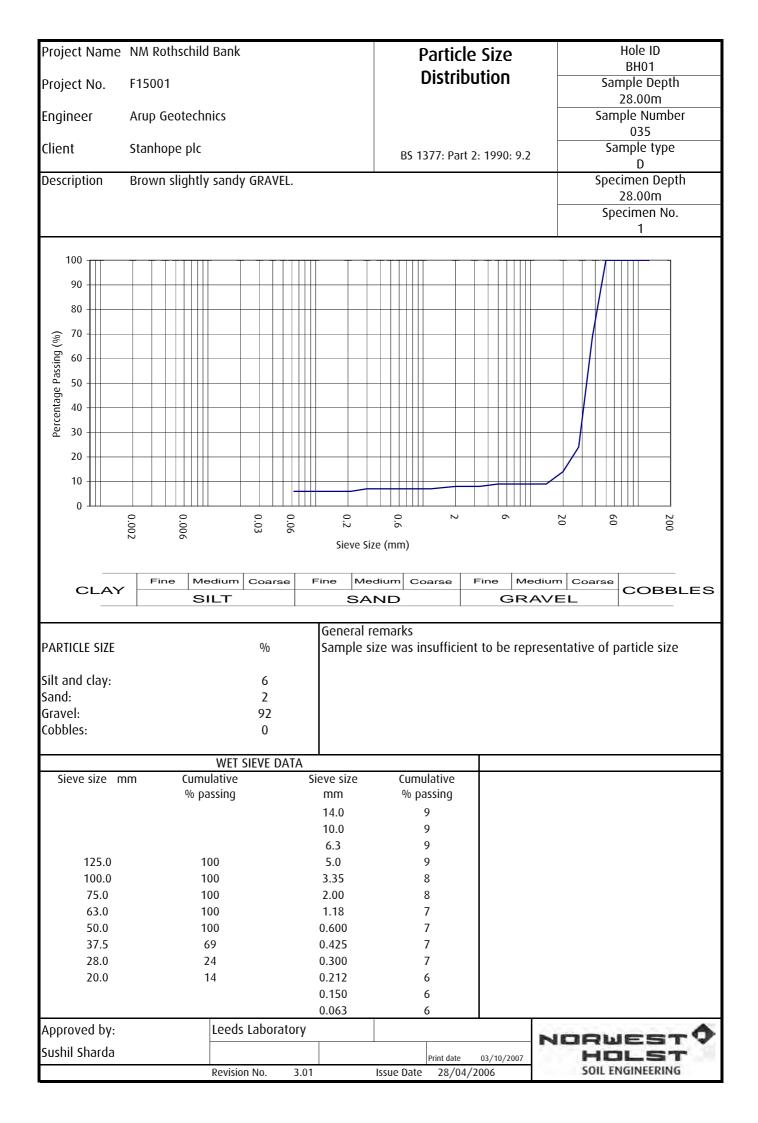


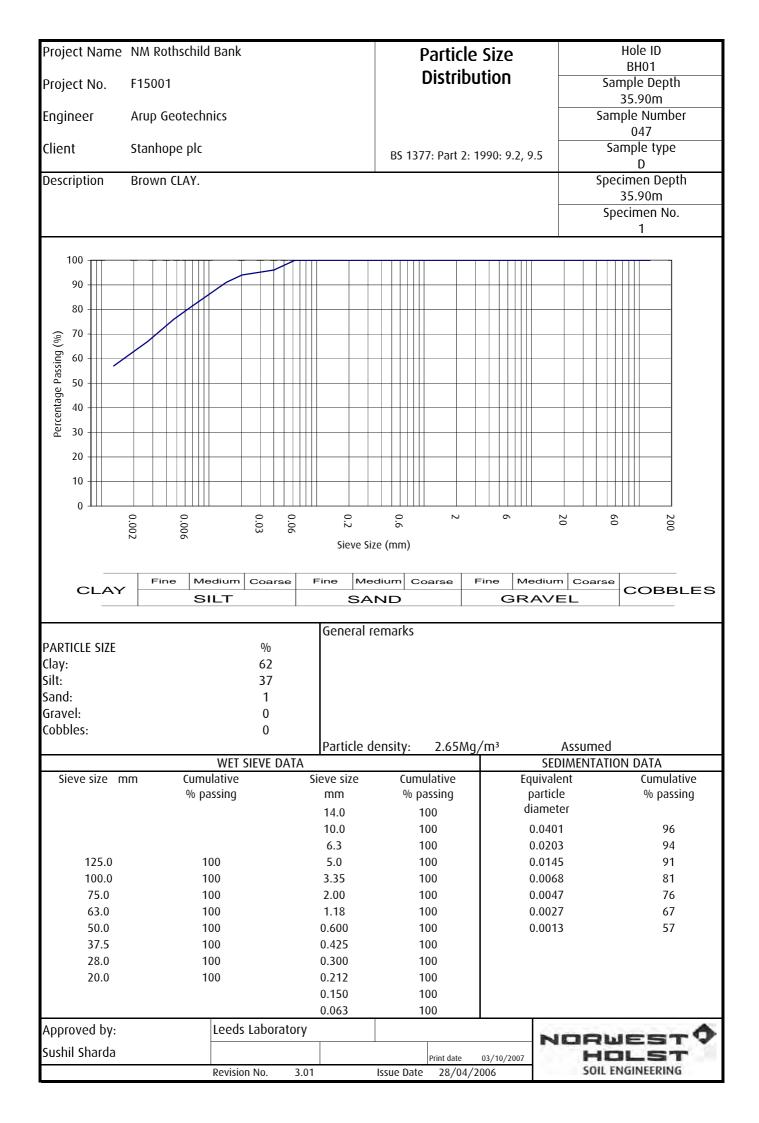


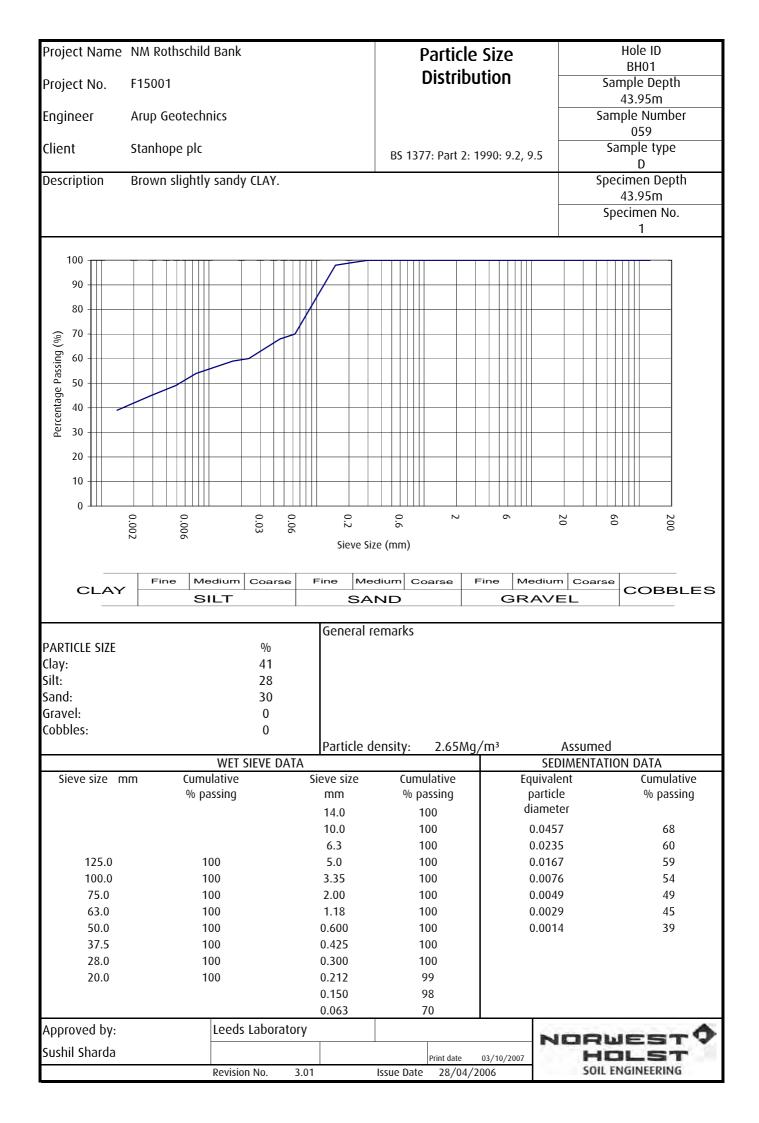


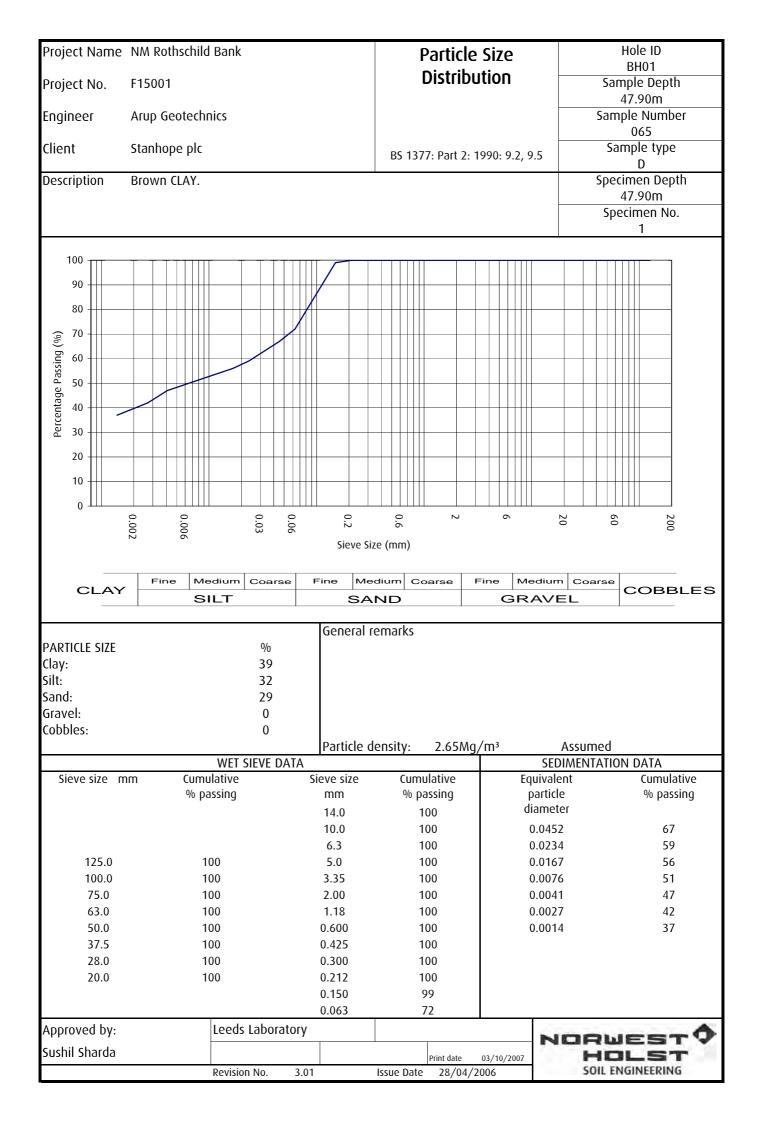


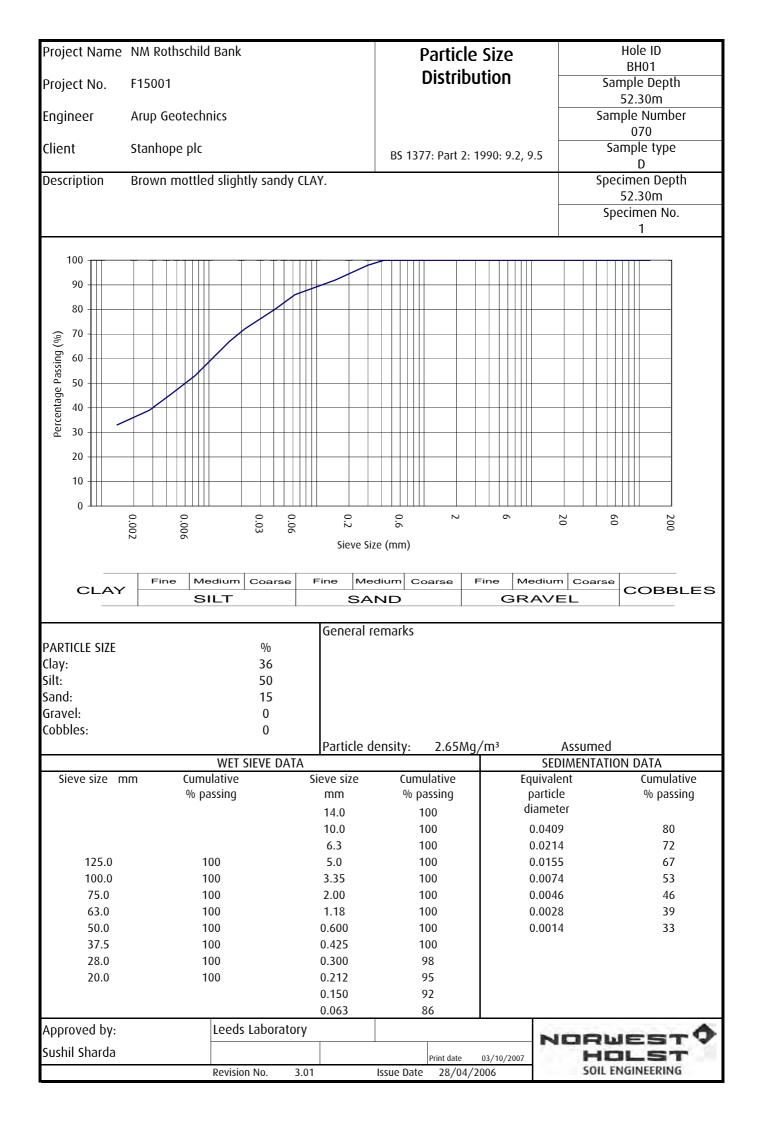




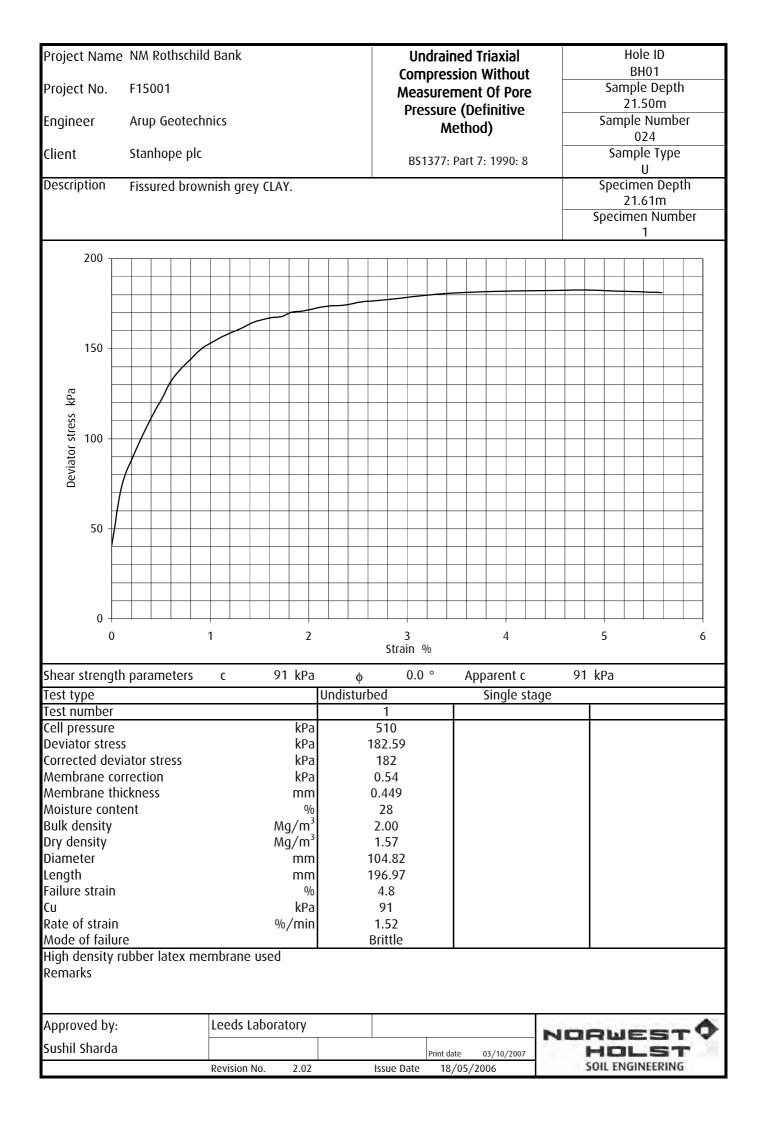




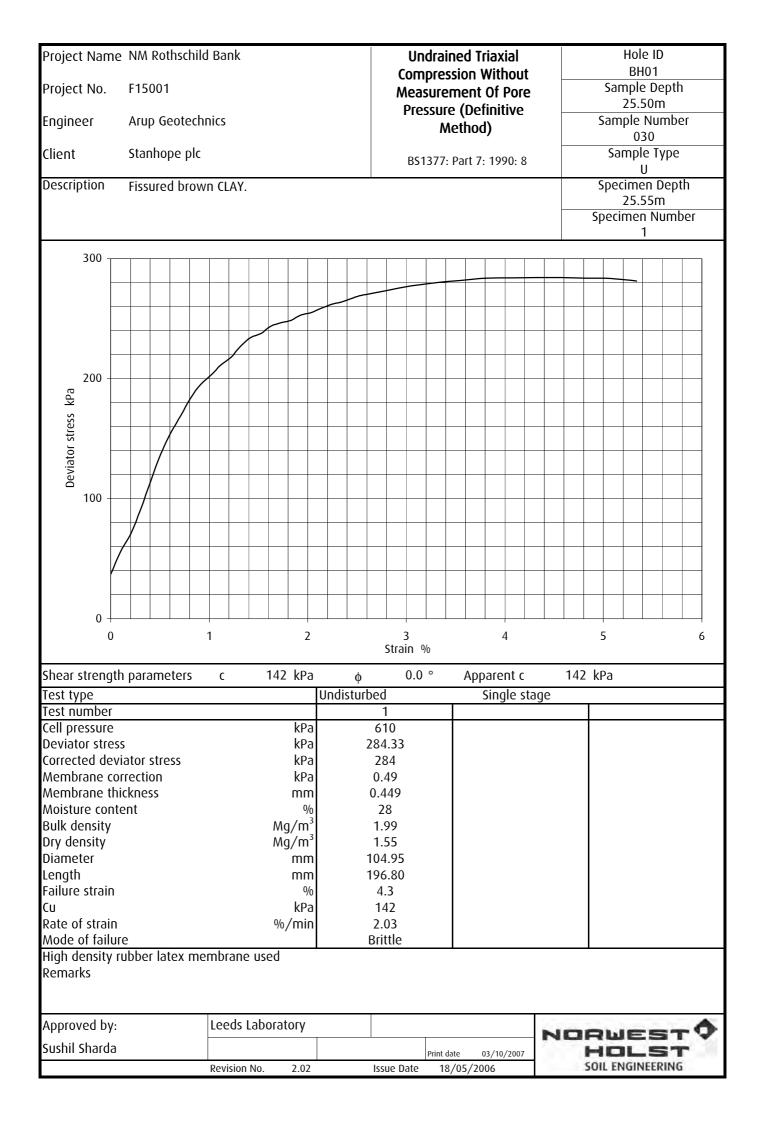

Project Name	NM Rothschild Bank		Par	ticle Si	ize		Hole ID BH01
Project No.	F15001		Dis	tributi	n		nple Depth
Engineer	Arup Geotechnics				-		21.85m Iple Number
Engineer	Arup deotectimics						025
Client	Stanhope plc		BS 1377: P	art 2: 199	0: 9.2, 9.5	Sa	mple type
Description	Brown slightly gravelly CLAY.					Spe	D cimen Depth
	5 7 5 7				-		21.85m
						Spe	ecimen No. 1
100							
90							
80							
Percentage Passing (%)							
-issed 50							
40 utage							
ළ 30							
20							
10							
0	· · · · · · · · · · · · · · · · · · ·	0		2	6 1	20 60	2
	0.06 0.03 0.006 0.006	0.2	0.6			0 0	200
		Sieve Siz	ze (mm)				
CLAY	Fine Medium Coarse	Fine Me	dium Coars	se Fin	e Medium	Coarse	COBBLES
	SILT	SA	ND		GRAVE	EL	
	0/	General r	emarks				
PARTICLE SIZE Clay:	% 49						
Silt:	35						
Sand:	2						
Gravel: Cobbles:	14 0						
		Particle d	ensity: 2	.65Mg/m		Assumed	
Sieve size n	WET SIEVE DATA	Sieve size	Cumulati		SED Equivale	IMENTATIO	N DATA Cumulative
SIEVE SIZE II	% passing	mm	% passii		particle		% passing
		14.0	92		diamete		
		10.0 6.3	92 87		0.0402 0.0206		81 77
125.0	100	6.3 5.0	87 87		0.0208		75
100.0	100	3.35	86		0.0070		65
75.0	100	2.00	86		0.0036		58
63.0 50.0	100 100	1.18 0.600	86 85		0.0024 0.0013		52 45
37.5	100	0.425	85		0.0012	,	CF
28.0	100	0.300	85				
20.0	92	0.212	85				
		0.150 0.063	85 85				
Approved by:	Leeds Laboratory				63		
Stuart Kirk			Drie	t date 03/	/10/2007		IESTV ILST
	Revision No. 3.0)1		8/04/2006			NGINEERING



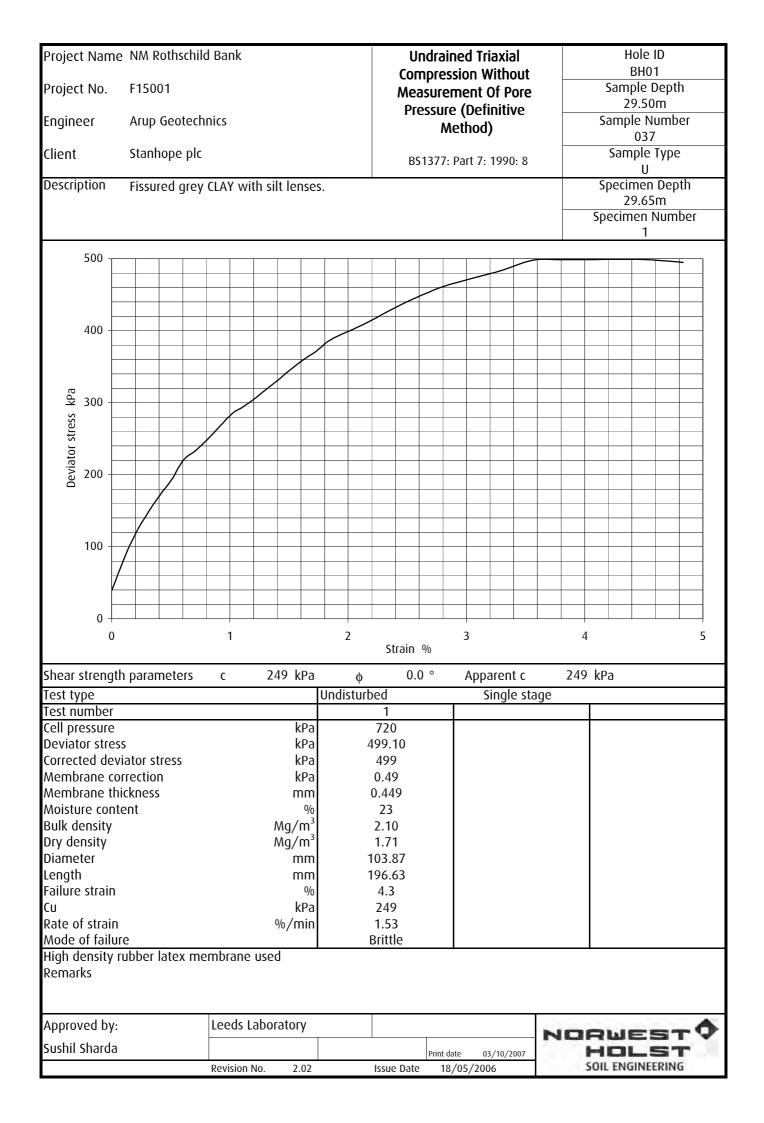
Project Name	e NM Roth	schild	Bar	٦k								Und											ole 3H0			
Project No.	F15001										Μ	omp easi	urer	ne	ent (Of F	ore				S	amp		Dept	h	
Engineer	Arup Geo	otechr	nics								F	res			Defi nod		ve				Sa	mpl	e N	umt	per	
Client	Stanhope	e olc																				Sam	006 ple		e	
Description	-	-				NV.						BS13	577:	Par	't 7:	199	0: 8					ecin	U			
Description	Brown sl	ignuy	' yra	veny	y CLA	Υ .																9 ecim	.70	m		
300 —																										— –
_																		_								-
_												_						+						_		-
-													_	_		-	_							-		-
-										-																-
200 — 문																										
Deviator stress kPa																										
r stre																										
viato		/																								
පී 100 –																										
	$A \parallel \downarrow$																									
Ľ																										
0 +																_										
0			1				2			S	3 trai	n %				4					5					6
Shear strengt	h paramet	ers	С		12	21 kF	а		φ		().0 °	>	ŀ	Арра	ərer	nt c		12	21	kPa	3				
lest type							U	ndis	stur						S	ingl	e st	age								_
Test number Cell pressure						kF	a			1 120	0															
Deviator stres Corrected dev		_				kF				242.																
Nembrane co		S				kf kf				242 0.5																
Membrane th						mi				0.44																
Moisture cont Bulk density	ent				Ν	∧g/n	% 1 ³			29 1.9																
Dry density					Ν	∧g/n	1 ³			1.5																
Diameter Length						mi mi				104. 198.																
Failure strain Cu						(%			5.0 12																
Lu Rate of strain					C	kF %/m				1.5																
Mode of failu High density i	re		mbr	200						Britt																
Remarks	יייייייייייייייייייייייייייייייייייייי	.A 11101	יוטויי	une	חאה	1																				
Approved by:			Lee	ds L:	abor	atory												20				1000	2			
Sushil Sharda				23 L(2001	2.019						-	leigt 1	.tc		140 1	2007	r	10		1.7.1		-	_	Ľ	Ψ
			Revi	sion N	۱o.	2.0	2			Issu	e Da		rint da 18		03 /200	3/10/:)6	2007					ENG				

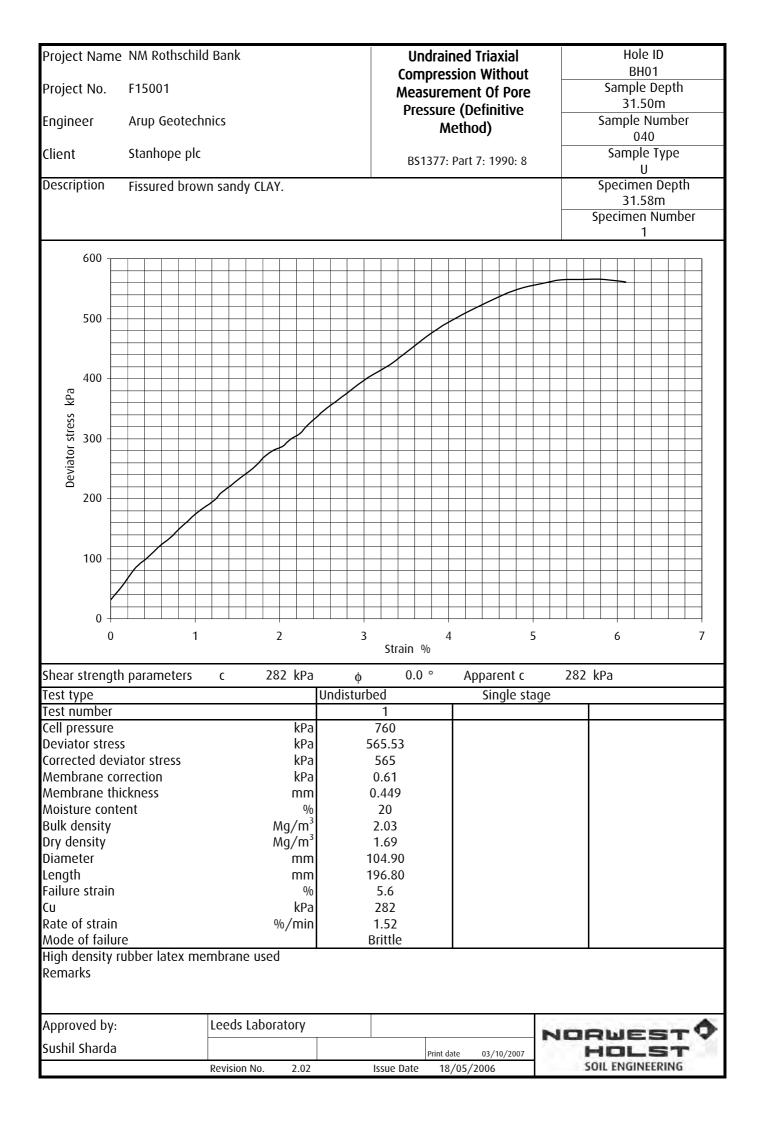

Project Nan	ne NM Ro	othschi	ld Ba	nk								ed Tria		.+				le ID H01		
Project No.	F1500	1							Ν	Comp Neasi	Irem	ent C)f Por	e		S	ampl	le Dej	oth	
Engineer	Arup (Geotec	hnics							Press		(Defii thod)		2		Sa	mple	.50m 2 Nurr	nber	
Client	Stanho	one nla	-													()09 ole Ty	De	
										BS13	77: Pa	art 7: 1	1990:	8				U		
Description	Fissure	ed prov	wn Cl	AY.													11.	en De .50m		
																Spe	ecime	en Nu 1	mber	
200 -																				٦
																				-
																				_
150 -			\square																	_
																				_
Deviator stress kPa 001		/																		_
ress																				_
- 100 - o																				
eviat																				_
Ō	/																			-
50																				-
50 -																				
																				_
																				_
0 -																				
	0			<u>.</u>	5					0 in %				15	5				2	20
Shear streng	gth param	neters	C		88	kPa		¢		0.0 °		Арра	rent o	2	88	kPa)			
Test type	_						Undi	sturb				Si	ngle :	stage		I				
Test number Cell pressure						kРа			1 200		_									
Deviator stre	ess					kPa		1	77.05	i										
Corrected de Membrane o						kPa kPa			176 0.96											
Membrane 1						mm			0.96).449											
Moisture co						%			29											
Bulk density Dry density	/				Mg Mg]/m³]/m³			3.65 2.84											
Diameter						mm		1	04.72											
Length Failure strai						mm %		1	07.07 9.8	,										
Cu						% kPa			9.8 88											
Rate of strai Mode of fail	ain %/r ailure								2.80 Frittle											
High density Remarks		atex m	iembi	rane u	ısed		<u>ı </u>				1_					<u>1</u>				
Approved by	y:		Lee	eds La	borat	огу								1					T	0
Sushil Shard	а							I		-	int date		/10/2007	7.1	1	H		.5	T	Ĩ.
	Revision No.					2.02			lssue D	ate	18/0	5/200	6			SUIL	ENG	NEERI	NG	

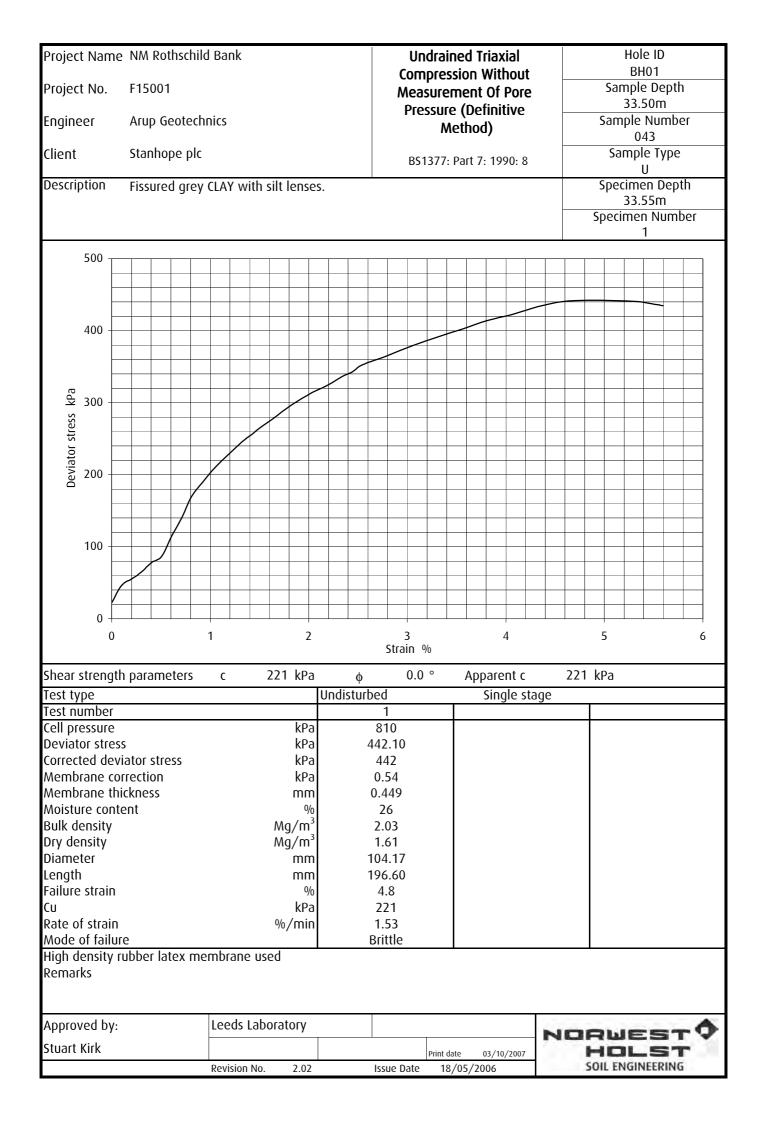
Project Name	NM Roths	schild Ba	nk										iaxial					Iole I BH01		
Project No.	F15001								Mea	sure	eme	ent (/ithou Of Por	e			Sam	ple C) epth	1
Engineer	Arup Geo	technics							Pre			Defi hod)	nitive)	2		S			umbe	51
Client	Stanhope	plc							BS	1377	': Pa	rt 7:	1990:	8			Sam	-	Туре	
Description	Fissured t	prownist	n grey	CLA	Ύ.												1	3.52	Dept m Numb	
300 —																				
200 —													_							
kPa kPa					\frown															
Deviator stress kPa																				
ators																				
Devia																				
100																				
	$\land \vdash$																			
Ľ																				
0 + 0			1				2	St	rain	%	3	3				4				5
Shear strength	n paramete	ers c		101	k Pa		φ		0.0) °		Арра	arent o	-	10	1 kP	а			
Test type	•					Undi						S	ingle	stage						
Test number Cell pressure					kРа			1 280)											
Deviator stres					kРа		2	01.4	12											
Corrected dev Membrane co					kPa kPa			201 0.33												
Membrane thi					mm			0.44												
Moisture cont Bulk density	ent				% g/m ³			27 2.00												
Dry density				M	g/m³			1.57												
Diameter					mm			04.8												
Length Failure strain				mm %		1	97.0 2.8													
Cu				kРа			101													
Rate of strain Mode of failur	e			%	/min			1.52 Brittl												
High density r Remarks		k memb	rane u	ısed							-					<u> </u>				
Approved by:		Lee	eds La	bora	tory									2						
Sushil Sharda					•					Print	date	07	8/10/200	7.1	10				57	
		Rev	ision N	0.	2.02			Issue	Date			5/200		<u> </u>					RING	

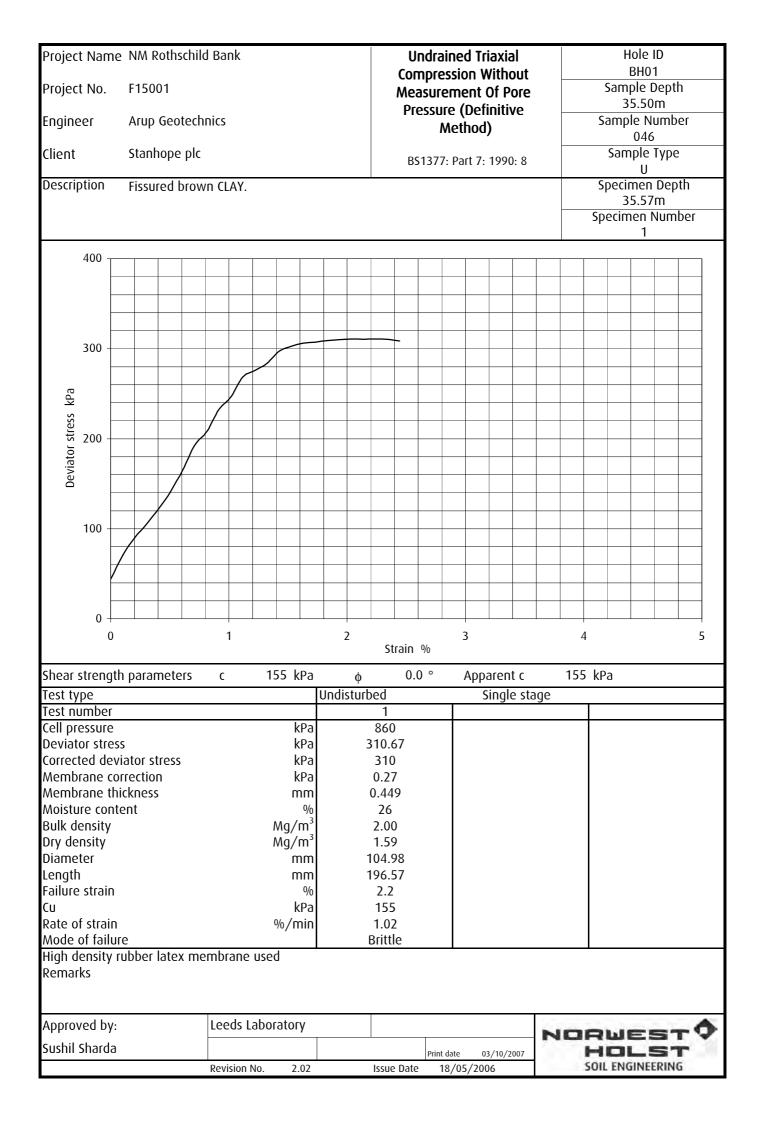

Project Name	NM Ro	thschil	d Bar	nk							ndra									lole			
Project No.	F15001	1									npre asure							9	Sam	BH0 ple [Dept	h	
Engineer	Arup G	eotech	inics							Рг	essu				/e			Si		5.50 le N		er	
-			inco								۸	Neth	(bo							015			
Client	Stanho	pe plc								B	51377	: Part	7: 1	990	: 8				Sam	nple U	Туре	•	
Description	Fissure	d grey	CLAY	r wit	h sil	t lens	es.											Sp		men 5.55		th	
																		Spe		5.55 1en l		ber	
																				1			
300]
																							-
																							-
																							-
													-	-									-
200 —							\rightarrow	\checkmark															-
kP –																							-
Deviator stress kPa				A																			-
ator																							-
Devia		\bigwedge																					-
100 -	/																						-
																							-
	$A \rightarrow$																						-
																							-
																							-
0 -																							
0			1	l				2	S	Strain	%	3					4					1	5
Shear strength	i parame	eters	С		10)9 kP	3	φ		0.	0 °	A	рра	rent	C		109	kP	а				
Test type							Un	ıdistu				1	Si	ngle	e stag	je		T					
Test number Cell pressure						kP	7		1 35														
Deviator stress						kP	а		217														
Corrected devi		ess				kP.			21														
Membrane cor Membrane thi						kP. mn			0.2 0.3														
Moisture conte	ent					0,	ό		27														
Bulk density Dry density					۸ ۸	Λg/m Λg/m	3		2.0 1.6														
Diameter						mn mn			104														
Length						mn			196.														
Failure strain Cu						ہ kP			2.: 10														
Rate of strain					0	%/mi			2.0)3													
Mode of failure High density ru		tex me	embr	ane	used	1			Brit	tle													
Remarks				5.10		-																	
Approved by:			Lee	ds La	abora	atory										64						_ (•
Sushil Sharda						-					Print	date	03/	/10/20		N				E:		L.	
			Revi	sion N	lo.	2.02	2		lssu	ie Date		8/05/								SINE			

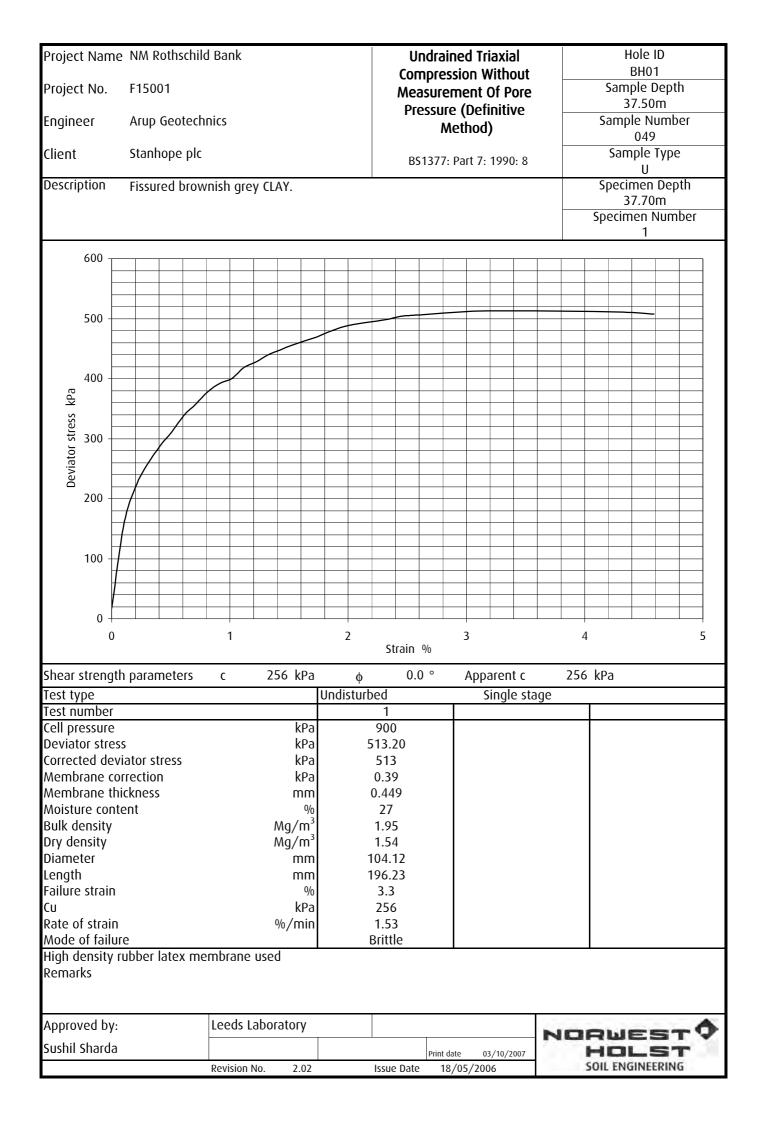
Project Name	NM R	oths	schile	d Ba	nk										d Tr							iole BH0			
Project No.	F150	01													on V ent		out Pore	-		0	Sam	ple	Dept	h	
Engineer	Arup	Geo	tech	nics								Pr			(Def		ve	-		Sa		7.50 le N)m Iumt	er	
5	•													met	hod)		-				018			
Client	Stanh											B	5137	7: Pa	ort 7:	199	0: 8					U			
Description	Fissur	red t	DLOM	/nish	l gre	y CL	AY.													Sp		men 7.51	i Dep Im	oth	
																		-		Spo			Num	ber	
300																						I			
500																									
																					-				
		/																							
200																									
Deviator stress kPa																									
or str																									
eviat	\square																								
ے 100 -																									
0																									
0				5	5				1	0	St	rain	%	1	5				20					2	5
Shear strength	n paran	nete	٢S	C		1	32 k			¢		0.	0 °		Арр	arer	nt c		132	k٩	а				
Test type Test number									Undi	sturl	bed 1				9	Singl	e sta	ge							
Cell pressure							k	۲a			400)													
Deviator stress								(Pa			264.														
Corrected devi Membrane cor								(Pa (Pa			264 0.4														
Membrane thi	ckness							nm			0.44	19													
Moisture conte Bulk density	ent						Mg/	%			28 2.0														
Dry density							wg/ Mg/	m ³			1.5														
Diameter							Π	nm			104.														
Length Failure strain							Π	nm %			197. 4.3														
Cu								кРа			132	2													
Rate of strain Mode of failur	ρ						%/n	nin		(0	1.5 mpc														
High density r		latex	k me	embr	ane	use	d			0	πpu														
Remarks																									
Approved by:				Lee	eds L	aboi	ator	y										62			12			_	•
Sushil Sharda													Prin	t date	n	3/10/	2007	N			/ ·	- N	5'	T'T	-
				Revi	ision I	No.	2	.02			lssu	e Date			5/20			5					ERIN		

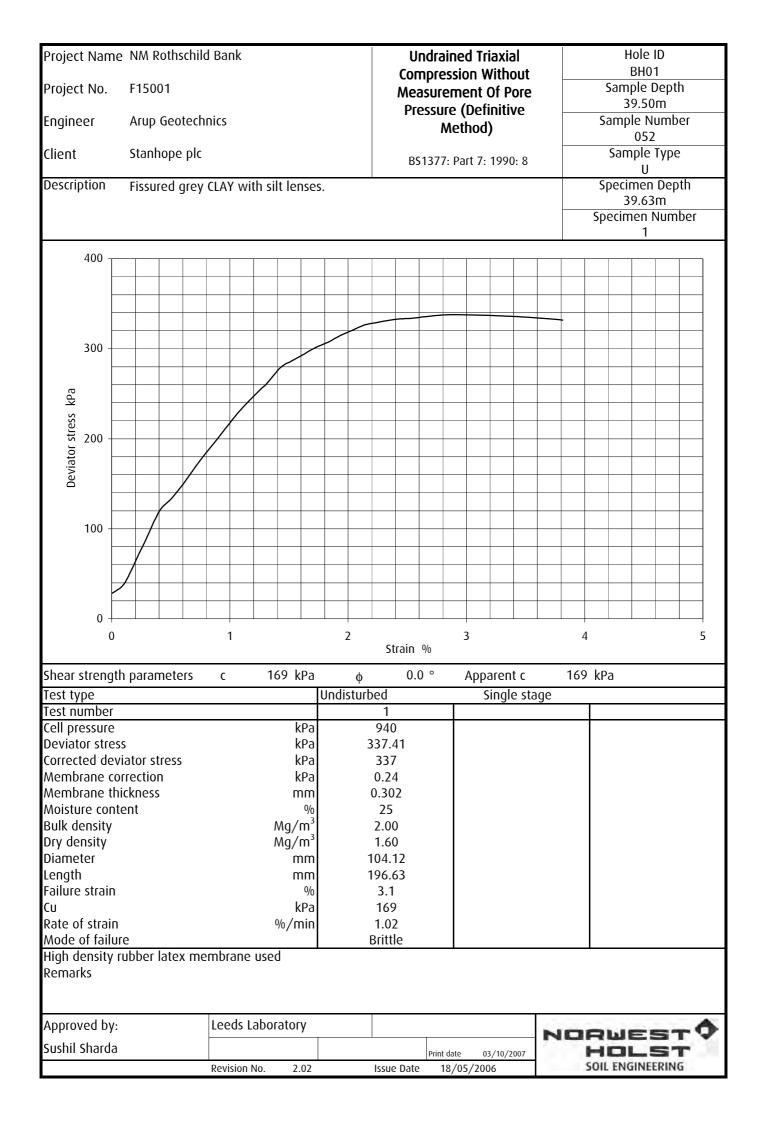

Project Name	NM Rothsch	ild Ba	nk										d Tri							lole			
Project No.	F15001												on W ent (BH0 ple (1 Deptl	h	
,													Defi						1	9.50	m		
Engineer	Arup Geoteo	hnics											hod					S	amp	le N 021	umb	er	
Client	Stanhope pl	с								B	137 [°]	7∙ Pa	rt 7:	199()· 8				Sam	ple	Туре		
Description	Fissured bro	wn (l	ΔΥ γ	with	silt le		20											S	pecir	U men	Dep	th	
beschption		WII CL		vicii	SILLIC	.1150												-	1	9.55	m		
																		Sp	ecim	ien l 1	Num	ber	
300 —																							1
																							-
																							-
_																		/	–				-
													_	<u> </u>									-
200 —									_														
КРа																							
ess																							
Deviator stress kPa																							
viato																							
පී 100 —																							
100																							
0 + 0		-	1					2	St	train	%		3	1			4	ļ		1		1	5
Shear strength	parameters	С		12	27 kF	Ъ		¢		0.) °		Арра	aren	t c		127	kP	а				
Test type						ι	Jndi	sturt	bed						e sta	ige							
Test number Cell pressure					kF)2			1 460			+											
Deviator stress	5				kF kF			-	460 254.0														
Corrected devi					kF				254														
Membrane cor Membrane thi					kF m				0.49 0.44														
Moisture conte						%			28														
Bulk density				Ν	Mg/n	1 ³			1.9														
Dry density Diameter				N	Ng/n m			-	1.5 [°] 104.4														
Length					m	m			196.	53													
Failure strain Cu					kF	% 2a			4.3 127														
Rate of strain				Q	™/%				1.5	3													
Mode of failure High density ru		ombr		11000	4				Britt	le													
Remarks	יייייייייייייייייייייייייייייייייייייי	IEIIIDI	ane	uset	L																		
Approved by:		Lee	eds L	abor	atory	,										6						_ (
Sushil Sharda									i		Prin	t date	07	3/10/2	007	Z	0	5 Z.	200		51	F	*
		Revi	ision N	No.	2.0	2			lssue	e Date			5/200								RIN		

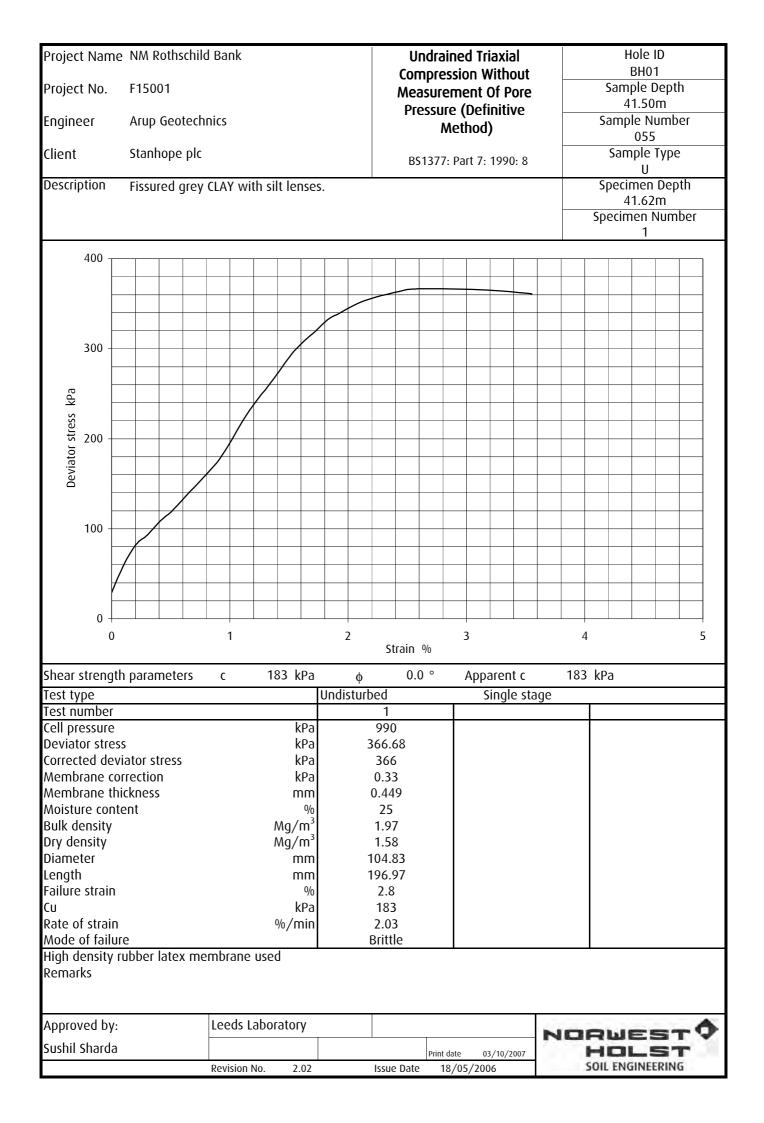


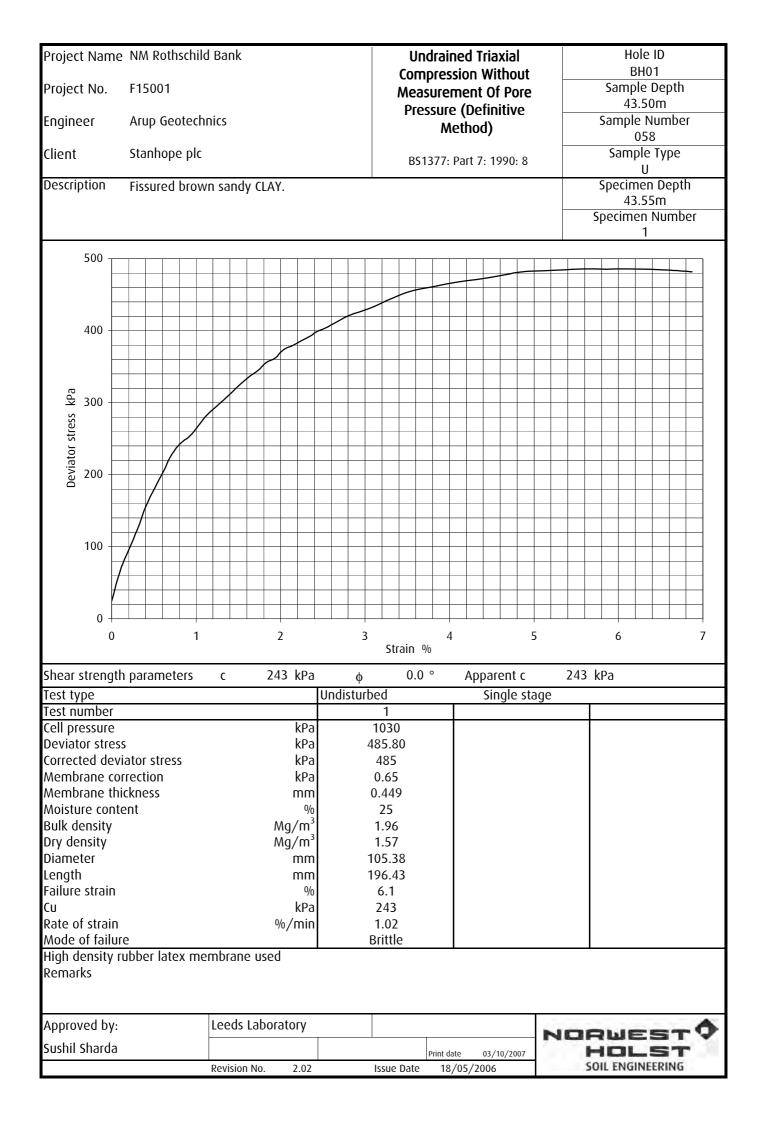

Project Name	NM Rothso	child Ba	nk										d Tri							ole I			
Project No.	F15001												on W					(BH0 [.] ple f	1 Deptl	<u>ו</u>	
TOJECTNO.	115001												ent (Defi						2	3.50	m		
Engineer	Arup Geot	echnics											hod					Sa	amp		umb	er	
Client	Stanhope	plc																	Sam	027 Iple	Туре		
										B	5137	/: Pa	rt 7:	1990): 8					U			
Description	Fissured g	reyish t	word	n CL/	AY.													Sp	Decir 2	men 3.53	Dep m	th	
																		Spo			Num	ber	
																				1			
300 —																							1
																							-
_																							-
_										-													-
																							-
200 —			\langle																				
L SSS																							
r stre																							
Deviator stress kPa																							
100 —																							-
																							-
																							-
																							-
																							-
0 +																							-
0			1					2	St	train	%		3				4						5
Shear strength	n parameter	rs c		12	23 kF	o Pa		φ		0.	0 °		Арра	aren	t c		123	kP	а				
Test type	1						Jndi	sturt	bed						e sta	ge							
Test number					L c				1														
Cell pressure Deviator stress	s				kF kF			-	560 246.4														
Corrected devi					kF			-	246														
Membrane co					kF				0.2														
Membrane thi					m				0.44 29														
Moisture conte Bulk density	em			Ν	Ng/n	$\frac{1}{3}$			1.9														
Dry density				N	Ng/n	n ³			1.5														
Diameter					m				104.														
Length Failura straig					m			-	196. כר														
Failure strain Cu					kF	% 2a			2.3 123														
Rate of strain				C	™/%				1.5	2													
Mode of failur		mamb	(200		4				Britt	le													
High density r Remarks	ubber idlex	пени	ane	usec	J																		
									1														
Approved by:		Lee	eds L	abor	atory	' 										N	0	R	ы	E	51	r (>
Sushil Sharda					-				<u> </u>			t date		3/10/2	007						57		
		Rev	ision I	No.	2.0	2			Issue	e Date		18/05	5/200)6			1	SOIL	ENC	INE	RIN	3	

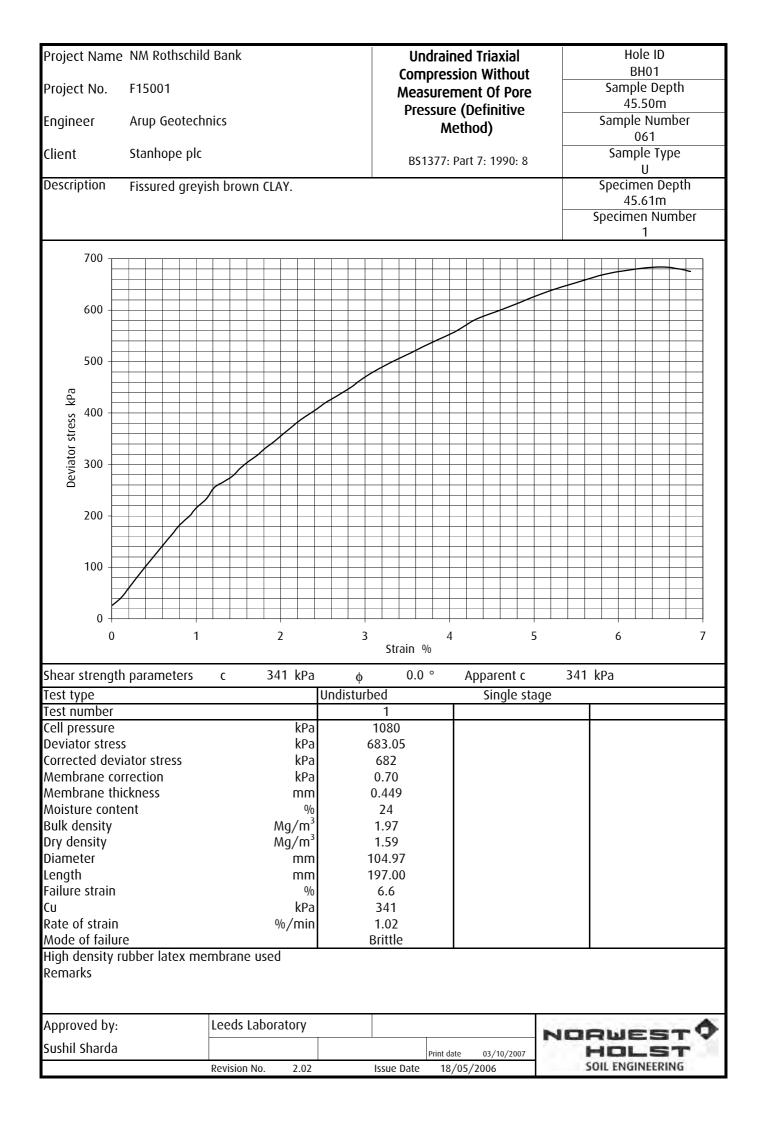












Client: Norwest Holst Ltd - Soil Engineering Div Parkside Lane Dewsbury Road LEEDS West Yorkshire LS11 5SX

FAO: Mr S Kirk

4

Test Report Number: R07/8447

Client Project Name: Client Project Number: Your Order Number: Order Receipt Date: Reporting Date: NM Rothschild Bank F15001 F15001 17/09/07 Friday 5 October 2007

If you have any queries regarding this report please contact our Customer Services Section

R07/8447 : Page 1 of 5

ECõS Environmental Limited Low Moor Business Park, Common Road, Bradford BD12 0NB Tel: 01274 691122 Fax: 01274 608100

Client: Norwest Holst Ltd - Soil Engineering Div Reporting Date: Friday 5 October 2007

Comments

All analyses are carried out using the laboratory's standard methods unless otherwise agreed.

The test results in this report refer only to the actual samples on which testing has been performed.

Any opinions and/or interpretations expressed herein are outside the scope of the testing laboratory's UKAS accreditation.

The test report shall not be reproduced, except in full, without the testing laboratory's written approval.

This testing laboratory cannot be held responsible for the condition or suitability of samples submitted for testing by a third party or for the competency of personnel other than its own staff.

This testing laboratory cannot be held responsible for the accuracy of test sample locations or descriptions when supplied by a third party.

Soil Samples

Results are expressed on a dried mass basis. Assisted drying carried out @ 40°C.

See key in Notes section for explanation of numerical categories for asbestos results, if applicable.

Stones (for example inert flints and inorganic minerals) >10mm are removed prior to analysis. Results have not been corrected for this loss.

Samples submitted for leachate determination were prepared using agreed procedures and analysed using UKAS accredited methodology where appropriate.

Results are expressed without correction for recovery factors.

Sample Pretreatment (as listed in method statement)

AD = Assisted drying @ 40°C R = As Received

Sample Type

B = Bulk disturbed sample C = Core Sample D = Small disturbed sample ES = Environmental Soil Sample P = Piston sample U = Undisturbed sample - open drive W = Water Sample EW = Environmental Water Sample

Sample Results

Analysis not requested *** Test not completed. Please see notes on last page

Signed:

For and on behalf of ECõS Environmental Limited

Approved signatories:

Name

- J R Brown
- L Dewell
- P Richardson
- J Stoddart 🛹

Position

Business Development Manager

Production Manager

- Section Head
- **Technical Manager**

Client: Norwest Holst Ltd - Soil Engineering Div Reporting Date: Friday 5 October 2007

Soil Samples

r

٠

Method Statement

Determinand	Method of Detection	Sample Pretreatment	Limit of Detection	UKAS Accreditati on	Sub- Contracted	Result Date
Sulphate (water soluble)	HPLC-IC	AD	0.001 g/l SO4	Yes	No	28/09/07
	pH-meter	AD	N/A	Yes	No	28/09/07
Organic Matter	Titration	AD	0.1 %	No	No	26/09/07
Material >2mm	Gravimetry	AD	0.1 %	No	No	28/09/07

Client: Norwest Holst Ltd - Soil Engineering Div Reporting Date: Friday 5 October 2007

Sample Locatio	n / Identification [BH01	BH01	BH01	BH01	BH01
	Top Depth / m	13.95	19.95	27.95	31.90	39.90
`В	ottom Depth / m					
	Sample No.	013	022	034	041	053
	Sample Type	D	D	D	D	D
	Date Sampled					
	Receipt Date	17/09/07	17/09/07	17/09/07	17/09/07	17/09/07
1	ECõS Sample ID	S0783353	S0783354	S0783355	S0783356	S0783357
	Matrix Type	Soil	Soil	Soil	Soil	Soil
Determinand	Units					
pH	N/A	7.9	8.1	#	7.8	7.6
Sulphate (water soluble)	g/l SO4	0.461	0.336	#	0.485	1.075
Material >2mm	%	3.1	2.1	1.2	1.2	4.1
Organic Matter	%	#	#	1.7	#	#

Client: Norwest Holst Ltd - Soil Engineering Div Reporting Date: Friday 5 October 2007

Notes and Preservation Details

None.

• >

End of Test Report

Client: Norwest Holst Ltd - Soil Engineering Div Parkside Lane Dewsbury Road LEEDS West Yorkshire LS11 5SX

FAO: Mr S Kirk

Test Report Number: R07/8497

Client Project Name:NM RotClient Project Number:F15001Your Order Number:F15001Order Receipt Date:26/09/01Reporting Date:Wedness

NM Rothschild Bank F15001 F15001 26/09/07 Wednesday 10 October 2007

If you have any queries regarding this report please contact our Customer Services Section

R07/8497 : Page 1 of 5

ECöS Environmental Limited Low Moor Business Park, Common Road, Bradford BD12 0NB Tel: 01274 691122 Fax: 01274 608100

Client: Norwest Holst Ltd - Soil Engineering Div Reporting Date: Wednesday 10 October 2007

Comments

All analyses are carried out using the laboratory's standard methods unless otherwise agreed.

The test results in this report refer only to the actual samples on which testing has been performed.

Any opinions and/or interpretations expressed herein are outside the scope of the testing laboratory's UKAS accreditation.

The test report shall not be reproduced, except in full, without the testing laboratory's written approval.

This testing laboratory cannot be held responsible for the condition or suitability of samples submitted for testing by a third party or for the competency of personnel other than its own staff.

This testing laboratory cannot be held responsible for the accuracy of test sample locations or descriptions when supplied by a third party.

Soil Samples

Results are expressed on a dried mass basis. Assisted drying carried out @ 40°C.

See key in Notes section for explanation of numerical categories for asbestos results, if applicable.

Stones (for example inert flints and inorganic minerals) >10mm are removed prior to analysis. Results have not been corrected for this loss.

Samples submitted for leachate determination were prepared using agreed procedures and analysed using UKAS accredited methodology where appropriate.

Results are expressed without correction for recovery factors.

Sample Pretreatment (as listed in method statement)

AD = Assisted drying @ 40°C

R = As Received

Sample Type

B = Bulk disturbed sample C = Core Sample D = Small disturbed sample ES = Environmental Soil Sample P = Piston sample U = Undisturbed sample - open drive W = Water Sample EW = Environmental Water Sample

Sample Results

Analysis not requested *** Test not completed. Please see notes on last page

Signed: (

For and on behalf of ECõS Environmental Limited

Approved signatories:

Name

- J R Brown
- L Dewell
- P Richardson
- J Stoddart 🗸

Position

Business Development Manager Production Manager Section Head Technical Manager

Client: Norwest Holst Ltd - Soil Engineering Div Reporting Date: Wednesday 10 October 2007

Soil Samples

÷

Method Statement

Determinand	Method of Detection	Sample Pretreatment	Limit of Detection	UKAS Accreditati on	Sub- Contracted	Result Date
Sulphate (water soluble)	HPLC-IC	AD	0.001 g/l SO4	Yes	No	08/10/07
H	pH-meter	AD	N/A	Yes	No	08/10/07
Material >2mm	Gravimetry	AD	0.1 %	No	No	09/10/07
Organic Matter	Titration	AD	0.1 %	No	No	03/10/07

Client: Norwest Holst Ltd - Soil Engineering Div Reporting Date: Wednesday 10 October 2007

/ Identification	BH01	BH01
Top Depth / m	5.50	7.50
tom Depth / m	5.90	7.95
Sample No.	001	003
Sample Type	В	В
Date Sampled		
Receipt Date	26/09/07	26/09/07
CõS Sample ID 🛛	S0783696	S0783697
Matrix Type	Soil	Soil
Units		
%	<0.1	#
%	48.2	89.7
N/A	#	8.1
g/i SO4	#	0.004
	Sample Type Date Sampled Receipt Date CoS Sample ID Matrix Type Units % % N/A	Top Depth / m5.50stom Depth / m5.90Sample No.001Sample TypeBDate Sampled26/09/07CoS Sample IDS0783696Matrix TypeSoilUnits%%<0.1

Client: Norwest Holst Ltd - Soil Engineering Div Reporting Date: Wednesday 10 October 2007

Notes and Preservation Details

None.

End of Test Report

.

SUPPORTING FACTUAL DATA SECTION C Laboratory Testing

CONTAMINATION TEST RESULTS

Heron Drive, Langley, Slough SL3 8XP tel: 01753 212500 fax: 01753 212501 email: langley@alcontrol.co.uk

01 November 2007

Page 1 of 8

Hannah Sydney Norwest Holst Soil Engineering Ltd Southern Regional Office Astral House Imperial Way Watford Hertfordshire WD24 4WW

TEST REPORT

Our Report Number: 07-40346

Your Order Reference: STC/4516

2 soil samples submitted for analysis on 18/10/2007

Project Name: NMR Bank

Project Code: F15001

Laboratory analysis started on 18/10/2007 All laboratory analysis completed by 01 November 2007

Rexona Rahman Analytical Reporting Manager ALCONTROL TECHNICHEM

Test methods are documented in house procedures or where appropriate standard methods. Non accredited tests (if applicable) are identified on each page. Procedures for sampling are outside the scope of the laboratory UKAS accreditation. Opinions and interpretations expressed herein are outside the scope of our UKAS accreditation. All samples connected with this report , including any 'on hold', will be stored and disposed of according to company policy. A copy of this policy is available on request.

ALcontrol Technichem Sample Description

> Job Number: 07-40346 Client: Norwest Holst Soil Engineering Ltd Project Code: F15001

Matrix: Soil Project Name: NMR Bank

Sample Description	Orange sand with gravel	Orange sand with gravel									
Sam	Orang	Orang									
Date Sampled	15/10/07	15/10/07									
Sample Depth (m)	2.00m	2.00m									
Sample Reference	TP03A	TP03B									
Laboratory Reference No	269991	269992									

Page 2 of 8

ALcontrol Technichem Table Of Results

Job Number : 07-40346 Matrix : Soil Project Code: F15001

Project Name: NMR Bank Client : Norwest Holst Soil Engineering Ltd

Sample Reference	TP03A	TP03B					
Sample Depth (m)	2.00m	2.00m			Me		1
Date Sampled	15/10/07	15/10/07			Method No	Units	LOD
Date Scheduled	18/10/07	18/10/07			d N	ts	0
Laboratory Reference No	269991	269992			0		
Analysis				-			
					1		-
Moisture Content (Dry Weight)	2.6	4.3	1.0		_	%	0.1
Moisture Content (Wet Weight)	2.5	4.1	1	1		%	0.1
Asbestos (Screen)	Absent	Absent	· · · · · · · · · · · · · · · · · · ·	_	001a		
Arsenic	14	18	12	00	69S ^{IM}	mg/kg	3
Beryllium	0.7	0.8		00	69S™	mg/kg	0.5
Cadmium	< 0.5	< 0.5			69S ^{IM}	mg/kg	0.5
Chromium	22	49		00	69S ^{IM}	mg/kg	10
Copper	15	16		00	69S ^{IM}	mg/kg	5
Lead	23	20		00	69S ^{IM}	mg/kg	10
Mercury	< 0.6	< 0.6		00	69S ^{IM}	mg/kg	0.6
Nickel	28	59		00	69S ^{IM}	mg/kg	4
Selenium	< 2.5	< 2.5		00	69S ^{IM}	mg/kg	2.5
Vanadium	35	45		00	69S ^{IM}	mg/kg	3
Zinc	37	52		00	69S ^{IM}	mg/kg	10
Total Cyanide	< 1	< 1		00	61S [™]	mg/kg	1
Organic Carbon	0.12	< 0.1		C)92 [™]	%	0.1
pH	8.6	8.3		08	84S ^{IM}	pH Units	1
* * EPH SUITE * *							
EPH (C10-C40)	13	13		07	70S ^{IM}	mg/kg	5
* * PCB SUITE * *	1			1			
PCB Congener 28	< 0.002	< 0.002		0:	39S™	mg/kg	0.002
PCB Congener 52	< 0.002	< 0.002		0:	39S ^{IM}	mg/kg	0.002
PCB Congener 101	< 0.002	< 0.002		03	39S ^{IM}	mg/kg	0.002
PCB Congener 118	< 0.002	< 0.002		0:	39S ^{IM}	mg/kg	0.002
PCB Congener 138	< 0.002	< 0.002		03	39S ^{IM}	mg/kg	0.002
PCB Congener 153	< 0.002	< 0.002		03	39S ^{IM}	mg/kg	0.002
PCB Congener 180	< 0.002	< 0.002		03	39S ^{IM}	mg/kg	0.002
PCB's (Sum of ICES Congeners)	ND	ND		0	39S ¹	mg/kg	0.002
* * PHENOLS SUITE * *	0.0000						
Phenol	< 0.1	< 0.1			20S ^{IM}	mg/kg	0.1
Total Monohydric Phenols	< 1	< 1		0	20S ¹	mg/kg	1

^M MCERTS accredited for sand, loam and clay.

ALcontrol Technichem Table Of Results

Job Number : 07-40346 Matrix : Soil Project Code: F15001

Project Name: NMR Bank Client : Norwest Holst Soil Engineering Ltd

Sample Reference	ТРОЗА	TP03B	· · · · · · · · · · · · · · · · · · ·	·			
Sample Depth (m)	2.00m	2.00m			Method No	ç	5
Date Sampled	15/10/07	15/10/07			od N	Units	LOD
Date Scheduled	18/10/07	18/10/07			ð		
Laboratory Reference No	269991	269992					
Analysis		1. M. 1				and and	1
* * PAH SUITE * *							â
Naphthalene	< 0.1	< 0.1			022S ^{IM}	mg/kg	0.1
Acenaphthylene	< 0.1	< 0.1			022S ^{IM}	mg/kg	0.1
Acenaphthene	< 0.1	< 0.1			022S ^{IM}	mg/kg	0.1
Fluorene	< 0.1	< 0.1			022S ^{IM}	mg/kg	0.1
Phenanthrene	< 0.1	< 0.1			022S ^{IM}	mg/kg	0.1
Anthracene	< 0.1	< 0.1			022S [™]	mg/kg	0.1
Fluoranthene	< 0.1	< 0.1			022S ^{IM}	mg/kg	0.1
Pyrene	< 0.1	< 0.1			022S ^{IM}	mg/kg	0.1
Benzo(a)anthracene	< 0.1	< 0.1	1		022S ^{IM}	mg/kg	0.1
Chrysene	< 0.1	< 0.1			022S ^{IM}	mg/kg	0.1
Benzo(b)fluoranthene	< 0.1	< 0.1			022S ^{IM}	mg/kg	0.1
Benzo(k)fluoranthene	< 0.1	< 0.1			022S ^{IM}	mg/kg	0.1
Benzo(a)pyrene	< 0.1	< 0.1			022S [™]	mg/kg	0.1
Indeno(1,2,3-cd)pyrene	< 0.1	< 0.1			022S [™]	mg/kg	0.1
Dibenzo(a,h)anthracene	< 0.1	< 0.1			022S ^{IM}	mg/kg	0.1
Benzo(g,h,i)perylene	< 0.1	< 0.1		1.0	022S [™]	mg/kg	0.1
PAH (Sum of EPA 16)	ND	ND			022S ^I	mg/kg	1.6
			4				

^M MCERTS accredited for sand, loam and clay.

ALcontrol Technichem Table Of Results

Job Number : 07-40346 Matrix : Soil Project Code: F15001

Project Name: NMR Bank Client : Norwest Holst Soil Engineering Ltd

Sample Reference	ТР03А	TP03B	2	_		
Sample Depth (m)	2.00m	2.00m		Method No	ç	5
Date Sampled	15/10/07	15/10/07		od I	Units	LOD
Date Scheduled	18/10/07	18/10/07		ő		
Laboratory Reference No	269991	269992				
Analysis						1
* * VOC SUITE * *						1
МТВЕ	< 0.025	< 0.025		071S ¹	mg/kg	0.025
Benzene	< 0.025	< 0.025		071S ¹	mg/kg	0.025
Toluene	< 0.025	< 0.025		071S ¹	mg/kg	0.025
Ethylbenzene	< 0.025	< 0.025		071S ¹	mg/kg	0.025
m,p-Xylenes	< 0.05	< 0.05		071S ^I	mg/kg	0.05
o-Xylene	< 0.025	< 0.025		071S ^I	mg/kg	0.025
1,3,5-Trimethylbenzene	< 0.025	< 0.025		071S ¹	mg/kg	0.025
1,2,4-Trimethylbenzene	< 0.025	< 0.025		071S ¹	mg/kg	0.025
	_					
						_
	_					
						-
		· · · · · · ·				

^M MCERTS accredited for sand, loam and clay.

ALcontrol Technichem EPH Description

> Job Number: 07-40346 Client: Norwest Holst Soil Engineering Ltd Project Code: F15001

Matrix: Soils Project Name: NMR Bank

(m) Date Sampled EPH Description	15/10/07 The sample chromatogram exhibits a hump of unresolved complex material eluting from C16 to C34.	15/10/07 The sample chromatogram exhibits a hump of unresolved complex material eluting from C16 to C34.			
Sample Depth (m)	2.00m	2.00m			
Sample Reference	TP03A	TP03B			
Laboratory Reference No	269991	269992			

Page 6 of 8

Job Number : 07-40346

Project Code: F15001

Project Name: NMR Bank Client : Norwest Holst Soil Engineering Ltd

Table Of Results - Appendix ALcontrol Technichem

Method No.	Reference	Description	Dry /sis
070S	In-house method	Determination of hexane/acetone extractable hydrocarbons in soil by gas chromatography with flame ionisation detection. Note: UKAS accreditation only applies to C10-C40 and excludes other carbon banding.	×
061S	In-house method based on Method 4500-CN, "Standard Methods for the Examination of Water and Waste Water", APHA AWWA WEF, Edition 18, 1992	Determination of cyanides and thiocyanate in soil samples by continuous flow colorimetry (Skalar)	N
039S	In-house method	Determination of PCB congeners in soil samples by hexane/acetone extraction followed by GC-MS determination	8
022S	In-house method	Determination of PAH compounds in soil samples by hexane / acetone extraction followed by GC-MS detection	N
020S	In-house method based on Second Site Property: Environmental Assessment Guidance Version 3: March 2003	Determination of methanol/water based mobile phase extractable phenols in soil samples by HPLC with electrochemical detection	×
071S	In-house method	Determination of volatile organic compounds in soil samples by headspace GC- MS analysis	Ν
092	In-house method	Determination of organic content and organic carbon in soil samples by combustion analyser	۵
084S	In-house method referencing BS1377: Part 3: 1990 and Second Site Property: Environmental Assessment Guidance Version 3: March 2003	Determination of pH by addition of water followed by electrometric measurement	0
S690	In-house method based on MEWAM "Methods for the Determination of Metals in Soil", HMSO, 1986	Determination of metals in soil samples by aqua-regia digestion followed by ICP- OES detection	٥

Page 7 of 8

Table Of Results - Appendix **ALcontrol Technichem**

Job Number : 07-40346

Project Code: F15001

Project Name: NMR Bank Client : Norwest Holst Soil Engineering Ltd

1.1
ort
rep
within
contained
 f methods
Summary of

Summary	summary of methods contained within report :		Wet/D Analys
Method No.	Reference	Description	ry sis
001a	In-house method based on HSG 248	Visual screening of soil samples for fibrous material requiring further identification according to method 001 (note for samples > approximately 1kg it may be necessary to sub-sample prior to screening)	

Soil results are expressed on a dry weight basis. Where the test uses as-received sample, a moisture correction factor is applied to the wet weight result. This factor is determined gravimetrically using weight loss on drying at 30° (+/-5) C.

Heron Drive, Langley, Slough SL3 8XP tel: 01753 212500 fax: 01753 212501 email: langley@alcontrol.co.uk

Page 1 of 3

Hannah Sydney Norwest Holst Soil Engineering Ltd Southern Regional Office Astral House Imperial Way Watford Hertfordshire WD24 4WW

01 November 2007

TEST REPORT

Our Report Number: 07-40346a

Your Order Reference: STC/4516

1 soil samples submitted for analysis on 18/10/2007

Project Name: NMR Bank

Project Code: F15001

Laboratory analysis started on 18/10/2007 All laboratory analysis completed by 01 November 2007

Rexona Rahman Analytical Reporting Manager ALCONTROL TECHNICHEM Staron Googh Sharon Googh Project Co-Ordinator <u>ALCONTROL TECHNICHEM</u>

Test methods are documented in house procedures or where appropriate standard methods. Non accredited tests are identified in the appendix. Procedures for sampling are outside the scope of the laboratory UKAS accreditation. Opinions and interpretations expressed herein are outside the scope of our UKAS accreditation. All samples connected with this report , including any 'on hold', will be stored and disposed of according to company policy. A copy of this policy is available on request.

WAC ANALYTICAL RESULTS

Our Report No: 07-40346a

Your Order No: STC/4516

1 soil samples submitted for analysis on 17 October 2007

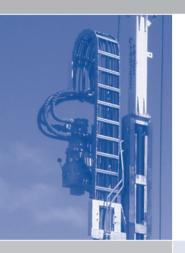
CLIENT: Norwest Holst Soil Engineering Ltd

DATE OF ISSUE: 01 November 2007

Lab Reference		269	9991		Landfill Wa	ste Acceptance Ci	iteria Limits		
Sampling Date		15/10	0/2007		Inert Waste	Inort Wasto Stable Non-reactive Hazardou			
Sample ID		TP	03A		Landfill	Hazardous Waste in Non-	Hazardous Waste Landfill		
Sample Depth (m)		2.0	00m		Lanam	Hazardous Landfill	Wuste Landin		
Eluate Analysis	2:1	8:1	2:1	Cumulative 10:1		for compliance leach 12457-3 at L/S 10 l/kg			
	m	g/l	mg	/kg	BSEN	12457-5 at L/5 10 1/kg	(ing/kg)		
080 Arsenic	< 0.005	< 0.005	< 0.010	< 0.050	0,5	2	25		
080 Barium	< 0.005	< 0.005	< 0.010	< 0.050	20	100	300		
080 Cadmium	< 0.001	< 0.001	< 0.002	< 0.010	0.04	1	5		
080 Chromium	< 0.005	< 0.005	< 0.010	< 0.050	0.5	10	70		
080 Copper	< 0.005	< 0.005	< 0.010	< 0.050	2	50	100		
080 Mercury	< 0.00005	< 0.00005	< 0.00010	< 0.00050	0.01	0.2	2		
080 Molybdenum	< 0.005	< 0.005	< 0.010	< 0.050	0.5	10	30		
080 Nickel	< 0.005	< 0.005	< 0.010	< 0.050	0.4	10	40		
080 Lead	< 0.005	< 0.005	< 0.010	< 0.050	0.5	10	50		
080 Antimony	< 0.001	< 0.001	< 0.002	< 0.010	0.06	0.7	5		
080 Selenium	< 0.005	< 0.005	< 0.010	< 0.050	0.1	0.5	7		
080 Zinc	< 0.005	< 0.005	< 0.010	< 0.050	4	50	200		
086 Chloride	13	< 10	25	< 100	800	15000	25000		
086 Fluoride	0.55	0.14	1.1	1.8	10	150	500		
086 Sulphate as SO₄	39	< 10	77	< 100	1000	20000	50000		
029 Total Dissolved Solids	- A -		÷		4000	60000	100000		
020 Phenol Index	< 0.01	< 0.01	< 0.02	< 0.1	1				
010 Dissolved Organic Carbon	< 5	< 5	< 10	< 50	500	800	1000		
Leach Test Information			000000000000000000000000000000000000000	Notesta and a state of the	0200002000000				
084 pH (pH Units)	7.6	7.4	6636566566533						
084 Conductivity (µS/cm)	209	79	20202302302333						
078 Temperature (°C)	17.0	17.0	83033698383						
	STREET								
021 Mass Sample (kg)	0.150		Considerations	<u>tennenner</u>					
021 Dry Matter (kg)	0.15		202303030305250		100000000000	100200000000000000			
021 Moisture (% Dry Weight)	2.6			en e					
Stage 1	000000000000000000000000000000000000000			8838668	100000000000000000000000000000000000000				
078 Volume Leachant, L ₂ (I)	0.289		1000000000000						
078 Filtered Eluate Volume, VE1 (I)	0.135				899999999999				
Stage 2	BESERVER BERNE	NERGENER	energi energi						
078 Volume Leachant, L ₈ (I)	1,170	deleven dele		deterministe			da a da		

Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepencies with current legislation

Waste Acceptance Method Appendix

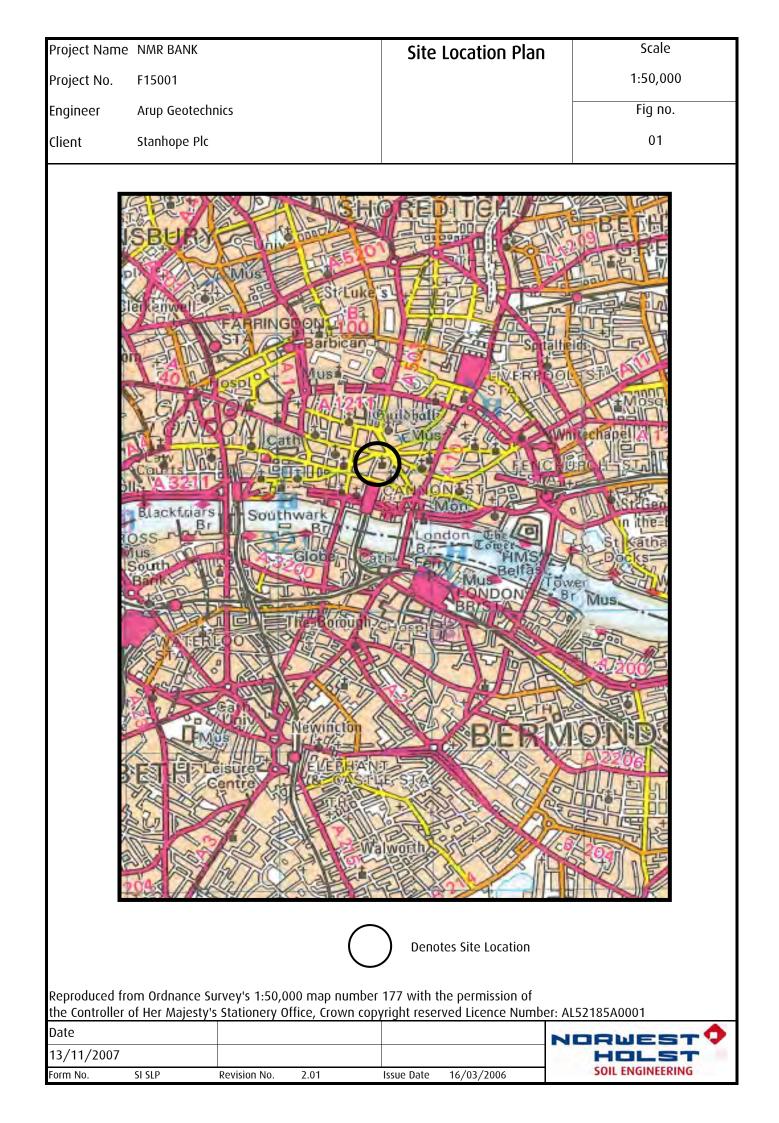

Our Report No: 07-40346a

Your Order No: STC/4516

CLIENT: Norwest Holst Soil Engineering Ltd

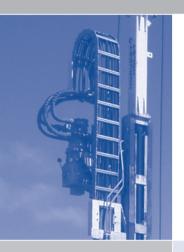
DATE OF ISSUE: 01 November 2007

Method Reference / Parameter	Extraction Summary	Detection Technique	ISO17025 Accredited
Solid Waste Analysis			
092 Total Organic Carbon		Carbon Analyser	1
019 Loss on Ignition	Oven heated at 450°C	Gravimetry	1
071 Sum of BTEX	Headspace	GC-MS	1
Benzene			1
Toluene			1
Ethylbenzene			1
m,p-Xylenes			1
o-Xylene			1
039 Sum of 7 PCBs	Hexane / acetone	GC-MS	
PCB Congener 28			1
PCB Congener 52			1
PCB Congener 101			1
PCB Congener 118			1
PCB Congener 138			~
PCB Congener 153			1
PCB Congener 180			1
065 Mineral Oil (C 8-C40)	Hexane / acetone with silica / alumina clean-up	GC-FID	×
022 PAH (Sum of 17 listed)	Hexane / acetone	GC-MS	
Naphthalene			1
Acenaphthylene			1
Acenaphthene			1
Fluorene			×
Phenanthrene			1
Anthracene			1
Fluoranthene			1
Pyrene			1
Benzo (a) anthracene			1
Chrysene	-		1
Benzo (b) fluoranthene			1
Benzo (k) fluoranthene			1
Benzo (a) pyrene			1
Indeno (1,2,3-cd) pyrene			1
Dibenzo (a,h) anthracene			1
Benzo (g,h,i) perylene			1
Coronene			1
084 pH	Water addition	Potentiometric	1
085 Acid Neutralisation Capacity (ANC)	Water addition	Titration	×
021 Moisture Content	Dried at 105 (+/-5) °C	Gravimetry	1
eachate Analysis†			
078 Leachate Preparation	In accordance with BS EN 12457-3		×
80 Metals	Nitric acidification	ICP-MS	~
86 Chloride	· · · · · · · · · · · · · · · · · · ·	Ion chromatography	~
986 Fluoride		lon chromatography	1
86 Sulphate	5	lon chromatography	~
029 Total Dissolved Solids	Evaporation	Gravimetry	1
20 Monohydric Phenols (Phenol Index)		HPLC - electrochemical detection	1
010 Dissolved Organic Carbon	Persulphate oxidation	Infra-red detection	~
)84 pH		pH meter	~
84 Conductivity		Conductivity meter	1




SUPPORTING FACTUAL DATA SECTION D Site Plans

SITE LOCATION PLAN


SUPPORTING FACTUAL DATA SECTION D Site Plans

EXPLORATORY HOLE LOCATION PLAN

SUPPORTING FACTUAL DATA SECTION E Photographs

INSPECTION PIT / TRIAL PIT / TRIAL TRENCH PHOTOGRAPHS

