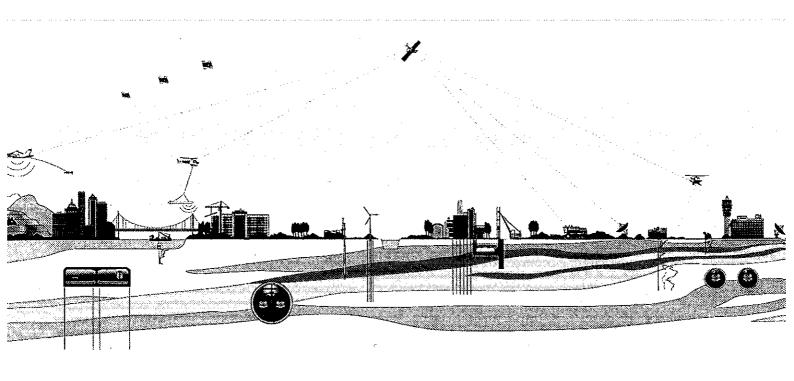
A14.6 – The Walbrook Development (Site Investigation) (Fugro Engineering Services Ltd)

MINERVA PLC


WALBROOK, LONDON - SITE INVESTIGATION

FINAL FACTUAL REPORT

CONTRACT NO : WAL050194

CLIENT: MINERVA PLC

CONFIDENTIAL

MINERVA PLC

WALBROOK, LONDON - SITE INVESTIGATION

FINAL FACTUAL REPORT

CONTRACT NO

WAL050194

CLIENT

MINERVA PLC

CONFIDENTIAL

REPORT ISSUE STATUS

01	26/05/2006	Draft Factual Report	KED	IPJ	IPJ	
02	30/06/2006	Final Factual Report	KED/ROR	ROR	IPJ	Marke
lssue	Date	Description	Prepared	Checked	Approved (Printed)	Approved (Signature)

MINERVA PLC WALBROOK, LONDON - SITE INVESTIGATION

CO	NTENTS	PAGE
1.	INTRODUCTION	1
2.	THE SITE AND GEOLOGY	1
	2.1 SITE LOCATION AND DESCRIPTION	1
	2.2 GEOLOGY	1
3.	PROPOSED DEVELOPMENT	2
4.	METHOD OF INVESTIGATION	2
	4.1 GENERAL	2
	4.2 CABLE PERCUSSION BORING	2
	4.3 ROTARY DRILLING	3
	4.4 CONCRETE CORES	3
	4.5 WINDOW SAMPLING BOREHOLES	4
	4.6 TRIAL PITS	4
	4.7 INSTRUMENTATION	5
	4.8 SURVEY	5
5.	RESULTS OF EXPLORATORY HOLES	5
	5.1 GÉNERAL	5
	5.2 STRATA ENCOUNTERED	6
	5.3 GROUNDWATER	6
6.	GEOTECHNICAL LABORATORY TESTING	6
	6.1 INTRODUCTION	6
	6.2 INDEX PROPERTIES	7
	6.3 PARTICLE SIZE ANALYSES	7
	6.4 UNDRAINED (TOTAL STRESS) TRIAXIAL COMPRESSION TESTS	7
	6.5 CHEMICAL ANALYSES	8
7	CONTABINATION TESTING	

MINERVA PLC WALBROOK, LONDON - SITE INVESTIGATION

CONTENTS

APPENDIX A Exploratory Hole Records

APPENDIX B Field Test Results

APPENDIX C Geotechnical Laboratory Test Results

APPENDIX D Contamination Test Results

APPENDIX E Drawings

APPENDIX F Photographs

1. INTRODUCTION

On the instructions and under the supervision of Ove Arup & Partners International Limited (the Engineer), acting on behalf of Minerva Plc (the Employer) a site investigation has been carried out by Fugro Engineering Services Limited (FES) at Walbrook, London.

The objective of the investigation was to determine the ground and groundwater conditions at the site and to provide information that would assist the Engineer in the geotechnical aspects of the design of the proposed works. The scope of the investigation was determined by the Engineer.

A factual report was requested including exploratory hole and field testing records, laboratory test results and site plan. The exploratory hole and laboratory test data have also been provided as digital data to AGS format. Photographs of the rotary core and the trial pits have been presented in Appendix F.

The site work, which comprised two combined light cable tool percussion and rotary cored boreholes to a maximum depth of 82.30m metres, twenty four concrete cores, six hand augers, five window sampler boreholes and twelve trial pits, was carried out between the 3rd January to 10th March 2006.

2. THE SITE AND GEOLOGY

2.1 SITE LOCATION AND DESCRIPTION

The site is located within the grounds and two level basement of St. Swithin's House in Bond Court and within the single storey basements of the adjacent Walbrook House and Granite House. All the buildings are located north of Cannon Street Station, London EC2.

The approximate national grid reference of the site is: TQ 326 809.

At the time of the investigation, the site consisted of three multi-storey buildings with basements and a central yard. Walbrook House and Granite House were occupied. The site is bounded by roads and high rise office and retail buildings.

2.2 GEOLOGY

The records of the British Geological Survey (Sheet 256 – North London - of the 1:50000 Series Geological Map, Solid and Drift Edition 1993) indicate that the site is underlain by Alluvium and Thames River Terrace Deposits over London Clay which is underlain by the Lambeth Group, Thanet Sands and Chalk at depth.

Further background research such as a desk study was not required within the terms of reference for the work.

3. PROPOSED DEVELOPMENT

It is proposed to redevelop the site into a single, large building which will involve deepening of the existing basements.

4. METHOD OF INVESTIGATION

4.1 GENERAL

A Cable Avoidance Tool (CAT) survey was undertaken at each of the exploratory hole locations. Prior to the sinking of the boreholes, the concrete flooring was removed by coring or stitch drilling and bursting techniques (see sections 4.4 and 4.6).

Details of the in-situ sampling and testing carried out, together with the descriptions of the strata and foundations encountered are given on the various exploratory hole records. An explanation of the symbols and abbreviations used on all the exploratory hole records, together with the method of strata description utilised, is given in the General Notes on Exploratory Hole Records (KS/01 to KS/06). The investigation was generally carried out in accordance with BS 5930: 1999ⁱ.

A Schedule of Exploratory Holes is given in Figure EH1 in Appendix A.

All geotechnical samples were transported to the laboratories and offices of FES in Wallingford for examination and testing as scheduled by the Engineer. Contamination samples taken during the investigation were sent directly to the contamination testing laboratory for testing scheduled by the Engineer.

A geotechnical engineer from FES was on site full time to order to view the site, locate the exploratory holes and supervise the fieldworks.

4.2 CABLE PERCUSSION BORING

Two, 200mm minimum diameter, boreholes were sunk to depths below ground level (bgl) of 51.15m (BH3) and 52.05m (BH1) using light cable percussion boring techniques. The boreholes were then extended by rotary coring techniques. The borehole records are given in Figures BH1 and BH3 in Appendix A.

Disturbed samples were taken at each change in soil type and at regular vertical intervals during boring in order to identify and give a record of the strata encountered.

MINERVA PLC WALBROOK, LONDON - SITE INVESTIGATION

In cohesive soils nominal 100 mm diameter general purpose driven open tube (U100) samples were taken and subsequently sealed to preserve their natural moisture contents.

Standard penetration tests (SPT) using a split spoon (S) or a solid 60° cone (C) were carried out in granular materials and alternating with U100 sampling in cohesive soils. The results are shown as S(N) and C(N) values on the borehole records at the relevant depths.

During the course of boring attention was given to recording any evidence of water inflow in order that the groundwater level beneath the site could be established. Water levels at breaks in boring were recorded where appropriate. Where water was added to facilitate penetration of the soil strata, or to maintain a positive hydrostatic head in the granular strata, this is noted on the borehole records in Appendix A.

4.3 ROTARY DRILLING

The two light cable percussion boreholes were extended by rotary core drilling to depths below ground level (bgl) of 81.00m (BH3) and 82.30m (BH1) using a double tube Geobore 'S' size core barrel and wireline drilling system with plastic coreliner.

During the course of drilling attention was given to recording any evidence of water inflow in order that the groundwater level beneath the site could be established. Water levels at breaks in boring were recorded where appropriate.

The cores were logged by a geotechnical engineer from FES and photographed on site. The Total Core Recovery (TCR) was determined and in a number of instances the logging geologist assessed that some core from one run was recovered with the core from the next run. In these cases the TCR have been determined assuming that the core had been recovered from the core run in which it had first been drilled. The borehole records are given in Figures BH1 and BH3. The rotary core photographs are given in Appendix F.

4.4 CONCRETE CORES

A total of twenty four concrete cores were drilled by Diacore Limited using concrete coring techniques.

Three 300mm diameter floor cores (BH1, BH1A and BH3) were drilled to enable construction at boreholes BH1 and BH3. Initially, concrete core BH1 was attempted as BH1A but this was terminated within concrete at a depth of 8.35m due to lack of progress. The hole was moved and re-drilled as BH1. The concrete core descriptions are given on the borehole logs in Figures BH1, BH1A and BH3 in Appendix A.

A further seven 107mm and one 50mm diameter floor cores (C7, C9 to C15), one inclined 50mm diameter core (C8) and twelve 107mm diameter wall cores (C1 to C6, C20 to C25) were also carried out.

A hand auger was used to obtain a 200mm sample behind or below the concrete at six locations (C1, C3, C5, C7, C8 and C14). The descriptions of which are presented on the concrete core records.

Five of the concrete cores (C9 to C13) were extended by window sampling techniques the results of which are presented as WS1, WS1A, WS2, WS3 and WS7 in Appendix A.

The core was logged in general accordance with BS 812-104:1994 and the description are given in Figures BH1, BH1A, BH3, C1 to C15 and C20 to C25 in Appendix A.

4.5 WINDOW SAMPLING BOREHOLES

Five dynamic sampling boreholes (WS1, WS1A, WS2, WS3, WS7) were sunk using the Soil Sampling (Windowless) System to depths of between 2.20m (WS1A) and 4.80m (WS3) below ground level (bgl). The boreholes were extended from the base of concrete cores C9 to C13. Penetration of the sampler was obtained by driving a series of 50mm diameter sampler tubes by percussion using a vibrating hammer. The soil in the sampler tubes was logged on site by a geotechnical engineer from FES who undertook pocket penetrometer testing and took disturbed samples from the tubes. The records are given in Figures WS1, WS1A, WS2, WS3, WS7 in Appendix A.

4.6 TRIAL PITS

Twelve trial pits, ten excavated by hand (AP1, AP2, AP6, AP8, AP9, AP11 to AP13, OP2, OP3) and two excavated by hand and a small bucket excavator (AP4 and AP5), were excavated to depths of between 0.75 (OP3) and 4.00m (AP5) below ground level. Trial pit AP5 was shored to allow the pit to be excavated and logged to 4.00m.

The concrete slab at the location of each pit was broken out by either a hand breaker and machine (AP4 and AP5) or by stitch drilling and bursting techniques (AP1, AP2, AP6, AP8, AP9, AP11 to AP13, OP2, OP3) prior to excavation.

The pits were logged by a geotechnical engineer from FES who took samples and carried out in-situ testing as shown on the trial pit records (Figures AP1, AP2, AP4 to AP6, AP8, AP9, AP11 to AP13, OP2, OP3 in Appendix A). Notes on excavation stability are also given on the records. Photographs of the trial pits were also taken by the engineer from FES and these are reproduced in Appendix F.

During the course of excavation, attention was given to recording any evidence of water inflow in order that the groundwater level beneath the site could be established. The depth at which water seepage or ingress was encountered has been noted on the trial

pit records. Water samples were taken from three trial pits (AP1, AP8 and AP9) where sufficient water was encountered to allow sampling.

4.7 INSTRUMENTATION

On completion of drilling, a vibrating wire piezometer was installed in borehole BH1 and a 50mm gas monitoring standpipe was installed in borehole BH3. Details of the installations are given on the relevant borehole records.

Observations of the water level in the installations were made during the fieldwork period. The results are given on Figures FT1/1 and FT1/2 in Appendix B.

4.8 SURVEY

The ground levels at the exploratory hole positions were related to an Ordnance Survey benchmark located on the Church of St. Stephen, Walbrook, the elevation of which is understood to be 12.20m OD. The ground levels have been quoted to the nearest 0.01m on the records.

The positions of the exploratory holes were set out by reference to features shown on the site plan by the Engineer. The grid co-ordinates of the exploratory holes were not requested.

5. RESULTS OF EXPLORATORY HOLES

5.1 GENERAL

Borehole records (Figures BH1, BH1A and BH3), concrete core records (Figures C1 to C15 and C20 to C25), window sample records (Figures WS1, WS1A, WS2, WS3 and WS7) and trial pit records (Figures AP1, AP2, AP4 to AP6, AP8, AP9, AP11 to AP13, OP2, OP3) giving details of the strata encountered are provided in Appendix A. A site plan showing the approximate positions of the exploratory holes is presented in Figure SP1 in Appendix E.

The strata descriptions given in the borehole records, unless otherwise noted, are compiled from an examination of the disturbed samples only, together with the results of any field and laboratory testing. Relative density descriptions are based on the results of the SPT and have not been amended to take into account any overburden effects. The consistency of cohesive strata is based on visual assessment together with any available in-situ vane and laboratory test results. Where there is a degree of uncertainty regarding the relative density or consistency of the soil, the terms "probably" or "possibly" have been used and the descriptions should be treated with caution.

The records should be read in conjunction with the General Notes on Exploratory Hole Records. *Particular attention is drawn to the comments made on groundwater and interpretation which are given in these Notes.* There may be ground conditions at the site which have not been revealed by the investigation.

5.2 STRATA ENCOUNTERED

The exploratory hole records encountered the following general succession of strata:

MADE GROUND

GRAVEL

CLAY (locally clay/silt)

SAND

CHALK

This generally concurs with the succession anticipated from published geological records.

5.3 GROUNDWATER

Groundwater was encountered during boring at borehole BH1 at 52.05m, rising to 45.85m after 20 minutes and at borehole BH2 at 9.15m and 49.15m.

Groundwater was encountered during excavation at 1.50m, 1.30m and 1.35m at trial pits AP1, AP8 and AP9 respectively.

Readings of groundwater levels in the installations are given in Figures FT1/1 and FT1/2 in Appendix B.

6. GEOTECHNICAL LABORATORY TESTING

6.1 INTRODUCTION

The following laboratory tests were scheduled by the Engineer and carried out by or for FES in accordance with BS1377:1990ⁱⁱ where applicable. The results are given in tabular and or graphical form as appropriate in a later section of the report. Attention is drawn to the comments on interpretation of the results of the investigation on KS/01 of the General Notes on Exploratory Hole Records. General Notes on Laboratory Test Results (Figure LKS/01) also precede the laboratory test results in Appendix C.

All tests with the exception of the chemical analyses were carried out in the Wallingford laboratory of FES and the tests for which the FES Wallingford laboratory have UKAS accreditation are detailed on the Schedules preceding the laboratory test results in Appendix C.

The chemical analyses were undertaken by Severn Trent Laboratories (STL), whose laboratory is accredited for the tests undertaken. The tests were carried out in accordance with BRE Special Digest 1ⁱⁱⁱ.

6.2 INDEX PROPERTIES

Liquid and plastic limit and natural moisture content determinations were made on fifty of the cohesive soils in order to classify the plasticity of the materials and the results are given on the Summary of Classification Tests (Figures LT1/1 to LT1/7 in Appendix C).

6.3 PARTICLE SIZE ANALYSES

Particle size analyses were undertaken on a total of fifty nine samples. Thirteen particle size analyses by sieving only with one additional analyses continued by sedimentation and forty five analyses by sedimentation only have been carried out in order to classify the materials in respect to their grain size. The results are given as particle size distribution curves (Figures LT2/1 to LT2/59 in Appendix C).

6.4 UNDRAINED (TOTAL STRESS) TRIAXIAL COMPRESSION TESTS

Unconsolidated undrained triaxial compression tests were carried out on thirty five samples of the cohesive materials to determine their undrained shear strength. The results including undrained cohesion, moisture content and bulk density are given on the Summary of Undrained Triaxial Compression Tests (Figures LT5/1 to LT5/5 in Appendix C). The sample descriptions given on these figures are the technicians visual description.

These tests were carried out on single specimens nominally 200mm long and 100mm in diameter at single confining pressures ranging from 195kPa to 1460kPa.

In a few cases the values of undrained cohesion obtained from the tests were not comparable to the visual assessment, or that which might have been anticipated either from the driving effort required for the penetration of the U100 samples or from empirical correlations with the SPT "N" values. This may be due to the silty, sandy and fissured nature of the material and this condition is found in strata of a similar lithology. The values of undrained cohesion obtained from the tests may not, therefore, be representative of the in-situ mass characteristics of the material.

6.5 CHEMICAL ANALYSES

Chemical analyses have been made on twenty three samples of soil as scheduled by the Engineer.

The pH values and total (acid) soluble sulphate were determined for all the soil samples.

These tests were undertaken by Severn Trent Laboratories (STL) and the results are presented as their test report references FESL/D4771, FESB/D5223, FESL/D5393 and FESB/D5553 at the end of Appendix C.

7. CONTAMINATION TESTING

The contamination testing was scheduled by the Engineer on a total of twelve soil samples and two groundwater samples.

These tests were undertaken by Severn Trent Laboratories (STL) whose laboratory is accredited by UKAS and details of their current accreditation may be obtained from them.

The results are presented as their test report references FESB/D4746, FESB/D5026, FESB/D4491 in Appendix D.

Katrena Derricourt

Project Engineer

lan Judge
Principal Engineer

MINERVA PLC WALBROOK, LONDON - SITE INVESTIGATION

REFERENCES

BS 5930: 1999, Code of Practice for Site Investigation. British Standards Institution.

BS1377:1990 Methods of test for soils for civil engineering purposes

BRE SD1:Building Research Establishment Special Digest 1: Parts 1 and 2 on Concrete in Aggressive Ground, 2001.

APPENDIX A Exploratory Hole Records

General Notes and Key Sheets on Exploratory Hole Records

Figures KS/01 to KS/06

Schedule of Exploratory Holes

Figure EH1

Borehole Records

Figures BH1, B1A, BH3

Concrete Core Records

Figures C1 to C15,

C20 to C25

Window Sampling Records

Figures WS1, WS1A,

WS2, WS3, WS7

Trial Pit Records

Figures AP1, AP2, AP4 to AP6, AP8, AP9, AP11 to AP13,

OP2, OP3

GENERAL NOTES

1 OPERATING PROCEDURES

The procedure used for cable percussion boring, rotary drilling, trial pitting, sampling, in situ and laboratory testing and sample descriptions are generally in accordance with BS5930:1999 'Code of practice for site investigations', BS EN ISO 14688-1:2002 'Geotechnical investigation and testing – Identification and classification of soil – Part 1 Identification and description', and BS1377:1990 'Methods of test for soils for civil engineering purposes', unless stated otherwise.

2 GROUNDWATER

Exploratory hole water levels are recorded together with the depths at which seepages or inflows of water are detected. These observations are noted on the Records, but may be misleading for the following reasons:

- a) The exploratory hole is rarely left open at the relevant depth for a sufficient time for the water level to reach equilibrium.
- b) A permeable stratum may have been sealed off by the borehole casing.
- c) Water may have been added to the borehole to facilitate progress.
- d) The permeability may have been altered by the excavation/boring/drilling process.

Standpipes or piezometers should be installed when an accurate record of groundwater level is required, however, it should be noted that groundwater levels may vary significantly due to seasonal, climatic or man-made effects. Water levels recorded during the investigation and any advice or comment made accordingly may, therefore, not be appropriate to particular foundation, geotechnical design, or temporary works solutions. Long term monitoring of standpipes or piezometers is always recommended when water levels are likely to have a significant effect on design.

3 CHISELLING

The remarks in the Borehole Records contain information on the time spent advancing the borehole by 'Chiselling Techniques', and the depth of borehole over which it was required. Such information may be affected by a wide range of variable factors, unrelated to the geotechnical properties of the strata. Such factors include, but are not restricted to: plant, equipment and operator. The data should, therefore, only be used subjectively and with extreme caution.

4 IDENTIFICATION AND DESCRIPTION OF SOILS - SEE SEPARATE SHEET

The identification system follows the Company's Manual of Standing Instructions for Logging procedures which is based on Tables 12 and 13, BS 5930:1999 and BS EN ISO 14688-1:2002

Relative density terms are given where supported by SPT N-values, with the exception of made ground. The field assessment of compactness or relative density for coarse grained soils is only given on trial pit records where visual inspection of the soils has been undertaken. Where the terms 'soft to firm', 'firm to stiff' etc. are used they indicate a strength based on inspection (and not supported by laboratory and in situ testing) which is close to the borderline between the two terms and cannot be precisely defined by inspection only. Visual assessments of consistency may have been amended in the light of field or laboratory test results.

Where 'to' links two terms, as in 'slightly sandy to sandy' this again represents a borderline case, where the precise proportion of constituents cannot be determined by inspection only.

The name of the geological formation is only given where this can be determined with confidence (see Clause 41.5 of BS 5930:1999).

5 INTERPRETATION OF THE RESULTS OF THE INVESTIGATION

The description of ground conditions encountered and any engineering interpretation included in the report are based on the results of the boreholes and trial pits and the field and laboratory testing carried out. There may be ground conditions at the site which have not been revealed by the investigation and consequently have not been taken into account.

Any interpolation or extrapolation of strata between exploratory holes shown on any cross-sections or site plans is an estimate only of the likely stratification based on general experience of the ground conditions and is subject to the interpretation of the reader.

The term "TOPSOIL" is used in this report to describe the surface, usually organic rich, layer including turf, subsoil and weathered material with roots. The use of this term may not imply that the soil satisfies the requirements of Clause 3 of BS 3882:1994, 'Specification for topsoil', or is suitable for general horticultural and agricultural purposes.

Laboratory test results in this report give the soil properties of individual specimens tested under specified conditions. Individual results or groups of results may not be appropriate for use as design parameters for some geotechnical analyses. The samples may be non-representative, disturbed internally, or prepared and tested under conditions suited for different geotechnical applications. Unless the selection of design parameters is discussed in this report, it is recommended that the advice of a Geotechnical Specialist is sought.

IN SITU TESTING AND SAMPLING

STANDARD PENETRATION TESTS

- Standard Penetration Test (SPT). A 50mm diameter split barrel sampler is driven 450mm into the soil using a 63.6kg hammer with a 760mm drop. The penetration resistance (also known as the 'N' value) is expressed as the number of blows required to obtain 300mm penetration below an initial seating drive of 150mm which is taken through any ground which may be disturbed at the base of the borehole. The test is usually completed when the number of blows recorded during the test drive only reaches 50 in soils or 100 in weak rock. If a sample is not recovered in the sampler, a disturbed sample is taken on completion of the test and given the same depth as the top of the Standard Penetration Test drive.
- C() Standard Penetration Test carried out with a 60 degree cone. The test is usually conducted in coarse granular soils or weak rock using the same procedure as for the SPT, but with a 50mm diameter, 60 degree apex, solid cone fitted to the split barrel. A bulk disturbed sample is taken and given the same depth as the top of the test drive.

The depth on the borehole record at the left hand side of the 'depth' column is that at the start of the normal 450mm penetration. Where the full penetration of 300 mm for the test drive is obtained, the penetration resistance ('N' value) is reported in the 'SPT Blows/N' column. If the full penetration of 300mm in the test drive is not obtained, then the length of drive (test length in mm) and the penetration resistance (number of blows) are both reported. Blows through the initial seating drive (normally 150mm) are not reported.

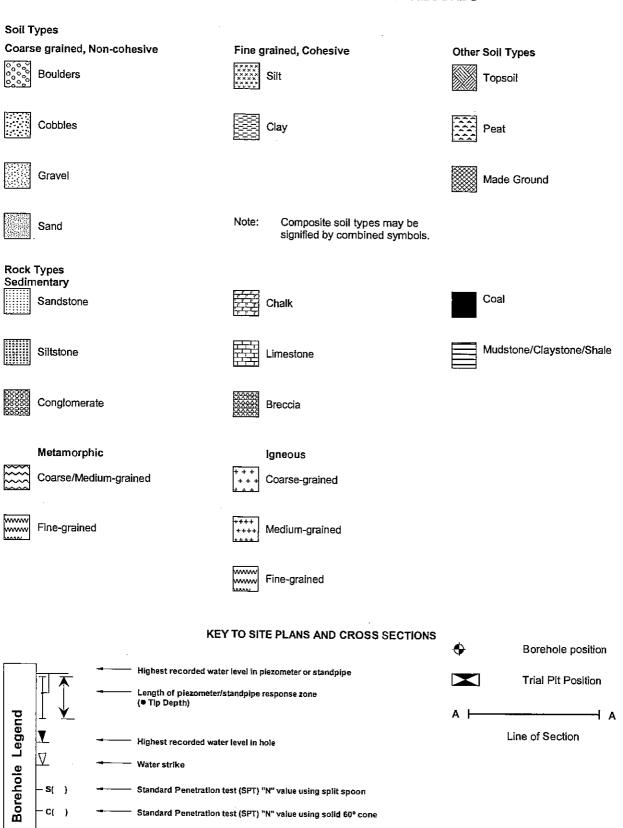
* in the 'Test Length' column denotes that the blows and penetration were all in the initial Seating Drive section.

OTHER IN SITU TESTS

The following in situ tests are reported on the Borehole Records, in the Test Length' and 'SPT Blows' columns where appropriate.

- k In situ Permeability Test refer to detailed test results for permeability values.
- PMT Pressuremeter Test refer to detailed test results for modulus values, etc.
- VN/R() Borehole Shear Vane Test (Undrained Shear strength c_v in kPa) refer also to detailed test results, N 'Natural' or peak shear strength, R Remoulded shear strength

The following in situ tests are reported on Trial Pit and/or Window Sample Records in the 'Type' and 'Result' columns, where appropriate.


- VN/R() Hand Shear Vane Test (Direct reading of Undrained Shear strength in kPa), N Natural or Peak, R Remoulded
- PP() Pocket Penetrometer (Penetration resistance reported in kg/cm² or as equivalent c_u in kPa)
- MX () Mexecone Reading given as equivalent CBR% value to the nearest 0.5% at 75mm intervals
- CBR() California Bearing Ratio Test (CBR%) refer also to detailed test results
- PID() Photo-lonisation Detector Readings in headspace of small disturbed chemical samples. Result given in ppm by volume.

SOIL SAMPLES

- General purpose open tube sample. Sample normally taken with open tube sampler approximately 0.1m diameter and 0.45m long and driven with 80kg sinker bar and 56kg sliding hammer, unless noted otherwise. "XX" in U100 blows column denotes the number of hammer blows. The height of hammer drop can be variable depending on operator technique. Depths are given to the top of the sample if full penetration and recovery are achieved, otherwise actual lengths of penetration and recovery are given in the appropriate columns.
- U(X) General purpose open tube sample (X) mm diameter
- TW(X) Thin wall (push) sample (X) mm diameter
- P(X) Piston sample (X) mm diameter
- CBR Sample taken in CBR Mould
- D Small disturbed sample (jar with air tight lid)
- B Bulk disturbed sample (polythene bag, tied at neck size dependent on purpose)
- W Water sample
- # Sample not recovered
- CDKV Set of samples for chemical analysis as below
- CD Sample for chemical analysis in a plastic tub
- K Sample for chemical analysis in an amber glass jar
- V Sample for chemical analysis in a glass vial

KEY TO BOREHOLE AND TRIAL PIT RECORDS

Undrained cohesion in kPa

cu(

DESCRIPTION OF ROCK CORES

DESCRIPTIVE ORDER

Strength, Structure, Colour, Texture, Grain Size, ROCK NAME, minor constituents and additional information, (geological formation - see comments under identification and description of soils), factual description of weathering state (if appropriate) and description of weathering state and discontinuities (if appropriate)

STRENGTH

Term	Field identification	Compressive Strength (MPa)
Very weak	Gravel sized lumps may be crushed between finger and thumb	<1.25
Weak	Gravel sized lumps can be broken in half under heavy hand pressure.	1.25 - 5.0
Moderately weak	Only thin slabs corners or edges can be broken off with heavy hand pressure.	5.0 - 12.5
Moderately strong	When held in hand rock can be broken by hammer blows.	
Strong	When resting on a solid surface rock can be broken by hammer blows.	12.5 - 50
Very strong	Rock chipped by heavy hammer blows	50 - 100
Extremely strong	Rock rings on hammer blow. Only broken by sledge hammer	100 - 200
		>200

DISCONTINUITIES

Bedding Spacing & Planar Structures*	Spacing (mm)		Discontinuity Spacing
	>6000		Extremely widely spaced
Very thickly bedded	>2000	2000-6000	Very widely spaced
Thickly bedded	600 - 2000		Widely spaced
Medium bedded	200 - 600		Medium spaced
Thinly bedded	60 - 200		Closely spaced
Very thinly bedded	20 - 60		Very closely spaced
Thickly laminated (Sedimentary) Very narrow (Metamorphic & Igneous)	6 - 20		Extremely closely spaced
Thinly laminated (Sedimentary) Very narrow (Metamorphic & Igneous)	<6	·	Extremely closely spaced
	<u></u>		

For igneous and metamorphic rocks the appropriate descriptive term for planar structure should be used e.g. medium foliated gneiss, very narrowly cleaved slate, very thickly flow banded diorite.

WEATHERING

BS5930:1999 requires that standard descriptions of weathered rocks for engineering purposes should always include comments on the degree, extent and nature of any weathering effects at material or mass scales. This may allow subsequent classification and provide information for separating rock into zones of like character. Indications of weathering include

- changes in colour
 changes in fracture state
- reduction in strength
 presence, character and extent of weathering products

If a systematic classification following the guidelines given in BS 5930:1999 can be applied unambiguously, this is described in the text of the report. Otherwise, the rocks are not classified in terms of weathering beyond the approach described above.

ROCK CORES

ROCK CORE SIZES

The core barrels commonly used by the Company in site investigations are as follows:

			site investigations ar			
Core Barrel	Borehole	Standard Core	Core Size using	Casing Size	Casing O.D	Casing I.D
Type	Diameter	Size	Rigid Plastic Liner	or Type	(mm)	(mm)
	(mm)	(mm)	(mm)		, ,	
	ANDARD BRITISH	SIZES				-
NWM	75.7	54.7	51	NX	88.9	76.2
HWF	98.8	76.2	72	HX	114.3	100.0
HWAF	99.5	70.9	-	HX	114.3	100.0
PWF	120.0	92.1	87	PX	139.7	122.3
SWF	145.4	112.8	107	SX	168.3	147.7
UWF	173.7	139.8	132	UX	193.7	176.2
<u></u>	<u></u>					
	WIRELINE SIZE	~				
BQ	59.9	36.4	35			
NQ	75.7	47 <i>.</i> 6	45			
HQ	96.1	63.5	61			
PQ	122.7	85.0	82			
GEOBORE	146.0	102.0	102	SX	168.3	147.7
s						
	THINWALL SIZE		<u>'</u>			
TNX	75.7	60.8	-	NX	88.9	76.2
T2 66	66.1	51.9	-	74	74.3	67.3
T2 76	76.1	61.9	-	84	84.3	77.3
T2 86	86.1	71.9	68	98	98.0	89.0
T2 101	101.1	83.9	80	113	113.0	104.0
T6 116	116.1	92.9	89	128	128.0	118.0
T6 131	131.1	107.9	104	143	143.0	133.3
	STANDARD BAR					
4.12F	105.2	74.7	72	PX	139.7	122.3
TRIEFUS	400 -					
5.5x4C	139.7	101.6	-	SX	168.3	147.7
BINCLE						
SINGLE						
TUBE	440	4				
B116	116	102	-	PX	139.7	122.3
B146	146	132	-	SX	168.3	147.7
N1=4=+ O P.	<u> </u>					

Note: Core diameters may vary when different lining systems are in use.

ROCK CORE CHARACTERISTICS

- TCR Total Core Recovery. The length of the total amount of core sample recovered, expressed as a percentage of the length of the core run.
- SCR Solid Core Recovery. The length of solid core recovered, expressed as a percentage of the length of the core run.

Solid core is defined as that length of core which has a full diameter, but not necessarily a full circumference. Only natural fractures are considered. Drilling or handling induced fractures are ignored.

- RQD Rock Quality Designation. The length of solid core recovered in pieces each more than 100mm long as a percentage of the core run length.
- Fracture Index. The number of discontinuities expressed as 'fractures per metre', measured over any convenient length of consistent fracture characteristics.

Zones of atypical fracturing of restricted extent which occur within a rock unit of uniform fracture characteristics are identified within the Description of Strata.

Ni - Not Intact

NR - No Recovery

NA - Not Applicable

 I_s Corrected point load strength index $I_s(50)$ which is given in MPa

IDENTIFICATION AND DESCRIPTION OF SOILS

Г	Basic	Particle Si	ze	Visual identification	Composite Soil T					Compactness	s/Strength	
ш	Soli Type			Only seen complete in pits or	(Mixtures of basic Scale of secondar			h caeree		Term Loose		
VERY COARSE SOILS	BOULDERS	3		exposures. Often difficult to recover	coarse soils. Tern	n before	e, descripti	on after Pi	and very rincipal	Loose		n of voids and
> ઉજ	COBBLE	3	200	from boreholes.		- B			Approx	Dense	particle pack	ing
Sizes)		coarse	60, 63^	Easily visible to naked eye; particle shape can be described, grading can be described.	Term before	Principal Soil Type	Descript	ion after	% 2 nd ry soil type	Standard Pe for Coarse G		in Boreholes
		medium	20	Well graded: wide range of grain sizes, well distributed. Poorly graded:	Slightly (sandy*)	ightly (sandy*)			<5	No of blows	Relative Dens Very Loose	ity
8 P	GRAVEL		6, 6,3^	not well graded. (May be uniform:	一 component secondary					<4 4-10		
COARSE SOILS (Typically over 65% Sand and Gravel		fine	2	size of most particles lies between narrow limits; or gap graded; an intermediate size of particle is markedly under represented).	(sandy*)	SAND, GRAVEL, CO or BOULDERS	1	onstituents. g. Gravel is ne and medium		10-30	Loose Medium Dens	e
98		coarse		Visible to naked eye; no cohesion when dry; grading can be described.	Very (sandy*)] # <u>5</u>	sandston mudstone		20 to	30-50	Dense	
ove 0		medium	0.6, 0.63^	Well graded and poorly graded: as		들힐	and (sa		40†	>50	Very Dense	
Ē,	SAND	mediam	_	above	- S and (cobbles+) 50† * Fine or coarse soil type as appropriate				Slightly		mination: pick	
(Typic		fine	0.2		Very coarse s described as i	oil type ine soi	as approp	riate 3 on behav		cemented	removes soil can be abrade	in lumps which ed.
1		coarse	0.063^	Only coarse silt visible with hand lens; exhibits little plasticity and marked			constituents with fine soils. To after principal constituent.			Uncompact (Silt)	Easily moulde the fingers	ed or crushed in
ay)	SILT	medium	0,02 0.006 .0063^	dilatancy; slightly granular or silky to the touch. Disintegrates in water, fumps dry quickly; possesses cohesion but can be powdered easily	Term before	Principal Soil Type	Description	on after	Approx % 2 nd ry soil	Compact (Silt)	Can be moul	ded or crushed ressure in the
FINE SOILS over 35% Silt and Clay)	CLAY/SIL		0.002	between fingers. Intermediate behaviour between day and silt. Slightly dilatant	Slightly (sandy*)	SILT	Used to compone		type <35	Very soft (Clay)	Finger e pushed in u	
. sol				Dry lumps can be broken but not	- (sandy*)	5	secondar constitue	nts	35 to	Soft (Clay)	25mm Finger pushe	d in 20 to 40
N is				powdered between the fingers; they also disintegrate under water but		Iĕ	e.g. sandy	gravelly CLAY,	65†	Gost (Clay)	up to 10mm	
f Typically o	CLAY			more slowly than silt; smooth to the touch; exhibits plasticity but no	Very (sandy*) * Coarse soil type	ľ	Gravel is rounded or		>65†	Firm (Clay)	impression ea	
È				dries slowly; shrinks appreciably on drying usually showing cracks.	slowly; shrinks appreciably on g usually showing cracks, mediate and high plasticity clays these properlies to a moderate (indicating preferred order for description)					Stiff (Clay)	Can be inde	mb 150
				show these properties to a moderate and high degree, respectively.						Very Stiff (Clay) Hard (Clay)	Can be inde by thumbnail Can be scrate	300
0	000414				Loose brown very with many pocket					naio (Ciay)	>300	
ORGANIC SOILS	ORGANIC CLAY, SILT SAND	Varies		Contains varying amounts of organic vegetable matter - defined by colour: grey - slightly organic; dark grey - organic; black – very organic.	Firm brown thinly interlaminated SILT and CLAY. Dense light brown dayey fine and medium SAND.				CLAY,	firm (Peat)	Fibres alread together	dy compressed
				Stru	cture							Particle Nature
Теп	n		Fiel	d Identification	Interval Scales							Particle
Hom gened		Dep	osit consis	ts essentially of one type.	Scale of Bedd	ing Sp:	acing	Mean S	Spacing m		cing of other inuities	shape (Sub) angular
Inter-be- or int lamina	er- Alti	emating layers equal proportio	ns. Otherv	types. Pre-qualified by thickness term if is thickness of, and spacing between,	Very thickly	y bedde	ed	over	2000	Very wide	ly spaced	(Sub) rounded
Heter	·o-			nate layers defined.							· · · · · ·	Well rounded^
gened Weaths	ared			ixture of types.	Thickly t			2000	-600	Widely	spaced	Very angular*
(granu Weathe	lar)			d and may show concentric layering.	Medium I				-200	Medium	spaced	Flat
(cohes	ive)		<u> </u>	mb or columnar structure.	Thinly b	edded		200	-60	Closely	spaced	Elongate
Shear				long unpolished discontinuities.	Very thinly	bedde	:d	60-	-20	Very close	ely spaced	Cubic*
Intac		Breaks i		along polished discontinuities	Thickly lat				-6 er 6	Extremely cle	sely spaced	Particle Surface Texture
Fibrous	Peat	Plant remains	recognisat	ole and retain some strength. When				<u> </u>]		. evinia
Pseuc fibrous			cognisable	only water, no solids , strength lost. Partial decomposition. en squeezed, <50% solids	Spacing terms a taminae, desiccati	may als	o be used	for distance	e betwee	n partings, isola	ited beds or	Rough
Amorph Pea	ous	Recognisable p	olant remai:	en squeezed, <50% solids ns absent, full decomposition. When paste with >50% solids.	used for	lamina	ne less than	i 2mm and	na auch a I less thar	s partings or du 1 1mm respectiv	aunys may de rely.	Smooth Polished
1 60		squ		, page 11141 - 60 /6 30/103.								,,

Identification and descriptive method, and descriptions, generally in accordance with BS5930:1999 Section 6 clauses 41 and 43 and BS EN ISO 14688-1:2002^
ABS EN ISO 14688-1:2002 - Geotechnical investigation and testing — Identification and classification of soil. Part 1: Identification and description
Additional notes relating to BS EN ISO 14688-1:2002 - Example descriptions of secondary fractions — coarse sandy fine gravel; sitly fine sand. Terms "Ciay" or "Silt" depend on soil behaviour. Large boulders are greater than 630mm. Peat may also be described as "Gyttja" if decomposed plant and animal remains and may contain inorganic constituents or "Humus" if plant remains and living organisms together with inorganic constituents for the topsoil. Additional notes relating to BS EN ISO 14688-2:2004 — modify terms for content of secondary fraction - sandy / gravelly indicates 20% to 40% of fine or coarse soil, slightly sitty / clayey indicates 5% to 15% of the soil, clayey / sitty indicates 15% to 40% of soil; Undrained shear strengths are described as extremely low to extremely high. THESE TERMS ARE DIFFERENT TO BS5930:1999 AND ARE NOT USED IN THIS REPORT.

SUMMARY OF EXPLORATORY HOLE DETAILS

Hole No.	Hole Type	Type (diameter mm)	
BH1	CC+CP+RT	300mm Floor Core	
BH1A	CC	300mm Floor Core	Terminated due to lack of progress. Moved and redrilled as BH1
ВН3	CC+CP+RT	300mm Floor Core	Drilled through backfilled trial pit AP2
C1	CC	107mm Wall core	Continued by hand auger 200mm
C2	CC	107mm Wall core	
C3	CC	107mm Wall core	Continued by hand auger 200mm
C4	CC	107mm Wall core	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
C5	CC	107mm Wall core	Continued by hand auger 200mm
C6	CC	107mm Wall core	
C7	CC	107mm Floor core	Continued by hand auger 200mm
C8	CC	50mm Inclined core	Continued by hand auger 200mm
C9	CC	107mm Floor core	Continued by window sample WS2
C10	CC	107mm Floor core	Continued by window sample WS3
C11	CC	107mm Floor core	Continued by window sample WS1
C12	CC	107mm Floor core	Continued by window sample WS1A
C13	CC	107mm Floor core	In place of trail pit AP7.Continued by window sample WS7
C14	CC	107mm Floor core	In place of trial pit OP5. Continued by hand auger 200mm
C15	CC	50mm Floor core	In place of trial pit AP3
C20	CC	107mm Wall core	
C21	CC	107mm Wall core	
C22	CC	107mm Wall core	
C23	CC	107mm Wall core	
C24	CC	107mm Wall core	
C25	CC	107mm Wall core	
WS1	ws	50mm	Started by concrete core C11
WS1A	ws	50mm	Started by concrete core C12
WS2	WS	50mm	Started by concrete core C9
WS3	WS	50mm	Started by concrete core C10
WS7	WS	50mm	Started by concrete core C13
AP1	TP		Concrete removed by stitch drill and bursting techniques, Hand Dug
AP2	TP		Concrete removed by stitch drill and bursting techniques, Hand Dug
AP4	TP		Concrete removed by hand held breaker and mini-excavator, Hand Dug
AP5	TP	Shored	Concrete removed by hand held breaker and mini-excavator, Machine Dug
AP6	TP		Concrete removed by stitch drill and bursting techniques, Hand Dug
AP8	TP		Concrete removed by stitch drill and bursting techniques, Hand Dug
AP9	TP		Concrete removed by stitch drill and bursting techniques, Hand Dug
AP11	TP		Concrete removed by stitch drill and bursting techniques, Hand Dug
AP12	TP		Concrete removed by stitch drill and bursting techniques, Hand Dug
AP13	TP		Concrete removed by stitch drill and bursting techniques, Hand Dug
OP2	TP		Concrete removed by stitch drill and bursting techniques, Hand Dug
OP3	TP		Concrete removed by stitch drill and bursting techniques, Hand Dug

Equipn	nent	Dando	2000/Rotary	Coring	_		i to 6.2					
_					3		to 52.	05m	Ground Level	10.48	m OD	
Dates	Drilled	Start End	02/02/2006 16/02/2006			Logged KD 02/03/	c	Compiled by Checked by 15 13/02/2006	Location St Swithin's House	_3.•	· = -	
Date &	Casing Depth	Depth to Water	Sample D	etails		SPT Blows/N Drive	U100 Blows/ Recovery	Description o	of Strata	Depth (Thick- ness)	Level	Legend
Time	(m)	(m)	Depth (m) From To	Туре	No.	Test	Result			(m)		
02/02								MADE GROUND: Tarmac over brown poorly sorted fine matrix with 75% angular sorted flint aggregate Loccasional voids up to 2	to coarse sand to subrounded poorly p to 30mm with	(0.40)	10.08	
	6.45 6.45	DRY DRY	6.35 6.35 6.35 6.35 6.85 6.85 6.85 7.55	DCKUD D J#B	12345 6 7	s12	18/ 400	From 5.20 to 5.23m: Made Grey poorly sorted fine matrix with 75 - 80% mod angular to subangular meaggregate up to 3mm with and 30mm rebar. From 5.85 to 5.75m: With and 30mm rebar. From 5.85 to 5.95m: With At 5.96m: Made Ground: (possibly bituminous) mulight grey poorly sorted subangular aggregate up and irregular base. Firm to stiff orange briggey. ClAY with rare sai	e Ground: Concrete; to coarse sand derately well sorted, onomictic flint a less than 10% voids a occasional 5, 10 a up to 30% voids. bark grey black atrix with 40 - 45% d angular to to 2mm. Rare voids	6.20	4.28	
	7.45	DRY	8.15-8.55	U	8	:	20/ 400					
	7.45	DRY	8.55 8.65	D	10	S15		Chiff chiff	amalus al acates	8.85	1.63	
	7.45	DRY	 9.15-9.55	U	11		20/ 400	fissured dark grey brown and with occasional len- light brown sandy silt.	remety closely of CLAY with rare sand ses or partings of Sand is fine.	- - -		
	7.45	DRY	9.55 9.65	D D	12 13	S17				<u>-</u> - -		
	(See not	7.45 7.45 7.45	7.45 DRY 7.45 DRY 7.45 DRY 7.45 DRY 7.45 DRY 7.45 DRY	6.45 DRY 6.35 6.35 6.35 6.35 6.45 6.85 6.85 6.85 7.30 6.95 7.45 DRY 8.15-8.55 7.45 DRY 8.65 7.45 DRY 9.15-9.55 7.45 DRY 9.55 9.65 PRY 9.55 9.65 The floor was removed the floor was removed to the f	6.45 DRY 6.35 6.35 CD K 6.45-6.85 U 6.85-7.30 D 7.45 DRY 8.15-8.55 U 7.45 DRY 8.65 D 7.45 DRY 9.15-9.55 U 7.45 DRY 9.65 D	6.45 DRY 6.45-6.85 D 5 6.45 DRY 6.85-7.30 D 6 7.45 DRY 8.15-8.55 U 8 7.45 DRY 8.65 D 9 7.45 DRY 9.15-9.55 U 11 7.45 DRY 9.65 D 12 7.45 DRY 9.65 D 12 7.45 DRY 9.65 D 13 Remarks 1 Prior to excavation a Cable A 15-8 potes 2 The floor was removed by conditions and the prior to excavation a Cable A 15-8 potes 2 The floor was removed by conditions and the prior to excavation a Cable A 15-8 potes 2 The floor was removed by conditions and the prior to excavation a Cable A 15-8 potes 2 The floor was removed by conditions and the prior to excavation a Cable A 15-8 potes 2 The floor was removed by conditions and the prior to excavation a Cable A 15-8 potes 2 The floor was removed by conditions and the prior to excavation and	6.45 DRY 6.35 CD 2 K 3 4 D 5 6.45 6.85 D 0 5 S12 D 6 S12 D 6 S12 D 8 D 10 S15 D 10 S	6.45 DRY 6.35 CD 2 K 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Sorted fine to coarse say	From 5.35 to 5.75m: With occasional 5, 10 and 300m rebar. 6.45 DRY 6.35 C C C C C C C C C C C C C C C C C C C	MADE GROUND: Concrete: Light brown poorly Sted file to proceed a submitted file to coarse sand marrix with 70 - 80% moderately well sorted, angular to subangular monomicite file sorted, angular to subangular monomicite file sorted, angular to subangular monomicite file sorted, angular to submitted file sorted, and sorted angular to submitted file sorted, and irregular base. 6.35	MADE GROUND: Concrete; Light brown poorly sorted fine to coarse sand matrix with 70 - 75% poorly sorted subangular to subrounded monomic tic filtr aggregate up to 30m with 10 - 13% up to 4mm. 4.85 5.63

5 See installation details on final sheet.

Tuge Tuge

Scale 1:50

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Contract No.

WAL050194

Figure No.

BH1 (1 of 10)

Drilling Method Cable Percussion & Rotary **Borehole Diameter Casing Diameter** BOREHOLE No. BH1 300mm to 6.20m 200mm to 52.05m 146mm to 82.30m Hole 200mm to 7.45m Dando 2000/Rotary Coring Equipment Ground Level 10.48 m OD Compiled by Logged by Checked by Location 02/02/2006 16/02/2006 **Dates Drilled** Start St Swithin's House gs 23/02/2006 aor 02/03/2006 End Depth SPT U100 Depth (Thick-Sample Details Date Casing Blows/N Drive mm Blows/ Recovery mm to Level Legend & Depth Description of Strata Water ness) Depth (m) Time (m) Type No. (m)Test From Τo Result (m) 7.45 DRY 10.15-10.55 14 U 25/ 400 CLAY (as previous sheet) 10.55 15 16 7.45 DRY **\$19** D (4.70)7.45 DRY 11.55-12.00 U 17 30/ 450 18 19 7.45 DRY s18 7.45 13.05-13.50 20 DRY U 30/ 450 21 22 Below 13.50m: Locally friable D 7.45 DRY **S20** 13.55 -3.07 Stiff becoming very stiff, extremely closely fissured, locally friable dark grey brown CLAY with occasional shell fragments and rare partings of light brown fine sand. 7.45 DRY 14.65-15.10 23 U 30/ 450 24 25 7.45 **S22** 7.45 DRY 16.05-16.50 U 26 30/ 450 16.50 16.55 16.55-17.00 27 28 D 7.45 DRY **\$26** 7.45 17.55-18.00 DRY U 29 **30/** 18.00 18.05 30 31 7.45 DRY 19.05-19.50 U 32 35/ 450 19.50 19.55 19.55-20.00 7.45 DRY s28 Remarks (See notes & keysheets)

Scale 1:50

TUGRO (

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Contract No.

WAL050194

Figure No.

BH1 (2 of 10)

Drilling Method Cable Percussion & Rotary Casing Diameter 200mm to 7.45m **Borehole Diameter BOREHOLE No. BH1** 300mm to 6.20m 200mm to 52.05m Hole Dando 2000/Rotary Coring Equipment 146mm to 82.30m **Ground Level** 10.48 m OD Compiled by Checked by Logged by Location KD 02/03/2006 02/02/2006 16/02/2006 Dates Drilled Start St Swithin's House gs 23/02/2006 NON, End Depth SPT U100 Depth Sample Details Date Casing Blows/ Recovery mm Blows/N Drive mm to (Thick-ness) Level Legend & Depth Description of Strata Water Depth (m) Time (m) No. Type (m) From Test Result Tο (m)CLAY (as previous sheet) 20.35m to 20.45m: CLAYSTONE band, recovered as subangular coarse gravel of mudstone. 20.35 D 35 7.45 DRY 20.65-21.10 U 36 45/ 450 37 38 21.15 21.15-21.60 7.45 DRY **S26** 7.45 22.15-22.60 39 50/ 450 DRY U 22.60 22.65 D 7.45 DRY S31 7.45 DRY 23.65-24.10 42 55/ 450 24.10 24.15 7.45 DRY **s**36 7,45 25.45-25.90 45 DRY U 55/ 450 25.90 25.95 7.45 DRY **s38** 7.45 27.15-27.60 DRY U 48 55/ 450 49 50 D 7.45 DRY **S41** 7.45 28.35-28.55 DRY U 51 70/ 200 D D 7.45 DRY \$50/ 50* 7.45 DRY 29.85-30.15 U 54 55/ 300 Remarks

(See notes & keysheets)

Scale 1:50

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No.

WAL050194

Figure No.

BH1 (3 of 10)

Drilling Method Cable Percussion & Rotary Borehole Diameter Casing Diameter **BOREHOLE No.** BH₁ 300mm to 6.20m 200mm to 52.05m 146mm to 82.30m Hole 200mm to 7.45m Equipment Dando 2000/Rotary Coring 10.48 m OD **Ground Level** Logged by Compiled by Checked by Location 02/02/2006 16/02/2006 Dates Drilled Start St Swithin's House gs 23/02/2006 NQA/ 02/03/2006 End Depth SPT U100 Depth Date Sample Details Casing Blows/N Drive mm Blows/ Recovery mm to (Thick-ness) Level Legend & Depth Description of Strata Water Depth (m) Time (m) Туре No. (m) Test From To Result (m)CLAY (as previous sheet) 7.45 DRY 30.25-30.70 S43 55 56 57 7.45 -31.80 DRY 60/ 450 31.80 31.85 58 59 7.45 S42 DRY (37.80) 7.45 32.85-33.30 U DRY 60 60/ 450 61 62 33.30 33.35 7.45 DRY **S44** 7.45 DRY 34.35-34.80 U 63 60/ 450 64 65 7.45 DRY s50 7.45 DRY 35.85-36.10 U 66 60/ 250 36.05m to 36.15m; CLAYSTONE band 67 68 36.10 36.15 D 7.45 DRY S50/ 40* At 37.35m; clay/silt 7.45 37.35-37.80 DRY 69 U 60/ 450 7.45 S51 7.45 DRY 38.85-39.20 U 72 60/ 350 7.45 02/02 DRY 39.20 39.25 73 74 Đ 03/02 7.45 7.45 DRY DRY S55/ 250 Remarks & keysheets)

Scale 1:50

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No.

WAL050194

Figure No.

BH1 (4 of 10)

Drilling Method Cable Percussion & Rotary Casing Diameter 200mm to 7.45m **Borehole Diameter** BOREHOLE No. BH1 Hole Dando 2000/Rotary Coring 300mm to 6.20m 200mm to 52.05m 146mm to 82.30m Equipment Logged by Compiled by Checked by

Ground Level 10.48 m OD Location

Dates	Drilled	Start End	02/02/2006 16/02/2006			Logger KD 02/03/		Compiled by gs 23/02/2006	Checked by	Location St Swithin's House			
&	Casing Depth	Depth to Water	Sample D			SPT Blows/N Drive mm	U100 Blows/ Recovery		Description of	Strata	Depth (Thick- ness)	Level	Legend
Time	(m)	(m)	From To	Туре	No.	Test	Result	1			(m)	 	
	7.45	DRY	40.35-40.80	U	75		60/ 450	CLAY (as pi Below 40.35	revious sheet) om; slightly sa	andy clay			
	7.45	DRY	40.80 - 40.85	DD	76 77	S55/ 245		Below 40.80	Om: Becoming fr	iable.			
	7.45	DRY	41.85-42.20	U	78		60/ 350						
	7.45	DRY	2.20 42.25 42.25	D D	79 80	s52	350				 - - - -		
	7 /5										<u>+</u> - - - -		
	7.45	DRY DRY	43.35-43.80 - 43.80 - 43.85	U D D	81 82 83	255 (65/ 450					i .	
		DK1	- 43.03			S55/ 245							
	7.45	DRY	- -		84		70/ 450				-		
	7.45	DRY	45.30 45.35	D D	85 86	\$50/ 225	<u> </u>						
	7.45	DRY	46.35-46.80	Ų	87		70/ 450						
	7.45	DRY	46.80 - 46.85	D D	88 89	\$54/ 225					- -		
	7.45	DRY	- - - - - - - - - - - - - - - - - - -	U	90		70/ 350						
	7.45	DRY	- 48.20 - 48.25 -	D D	91 92	s50/ 180							
	7.45	DRY	49.35-49.80	U	93		70/ 450						
14/02	7.45 7.45	DRY	49.80 _ 49.85	D D	94 95	s52/					-		

Remarks

(See notes & keysheets)

Scale 1:50

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No.

WAL050194

Figure No.

BH1 (5 of 10)

Drilling Method Cable Percussion & Rotary Equipment

Hole Dando 2000/Rotary Coring

Drill Fluid
Orientation (°) 0
Dates Drilled Start 02/02/2006
End 16/02/2006

Borehole Diameter 300mm to 6.20m 200mm to 52.05m 146mm to 82.30m Casing Diameter 200mm to 7.45m

BOREHOLE No.

BH1

10.48 m OD

	uid ation (°) Drilled	Start End	02/02/1 16/02/				KD	ged by	qs	piled by Checked by 2/2006	Ground Level Location St Swithin's House	10.48	m OD	
&	Casing Depth	Water Depth (m) (Flush	Sai Depth	mple/Co ı (m)	Type	No.		SPT Blows /N	U100 Blows/ Rec. mm	Description	of Strata	Depth (Thick- ness)	Level	Legeno
Time	(m)	Return)	From	То	TCR %	SCR %	RQD %	Core Size (mm)				(m)		
			-					175		CLAY (as previous shee	t)			
	7.45	DRY	50.85	-51.30	υ	96			70/ 450					
03/02	7.45	DRY	51.30 - 51.35		D D	97 98		s50/ 175		Very stiff fissured br and blue grey sandy CL occasional lenses and sand. Fissures are med subhorizontal, smooth	num spaced.	51.35	-40.87	×,
,		(0)	52.05- 52.05-	52.50 52.30	30		 	S52/ 100		Subiorizontat, Smooth	with Stickensides.	- -		×
			52.05		D	99		100				F .		, ,
		(0)	52.50-	54.00	99					From 53.05 to 53.90m: blue grey.	Red brown mottled			×, ×,
			-		<u> </u>					From 53.8 to 54.10m: F mottled red brown, ver	riable, blue grey y silty.	- - - -		*, *,
-		(0)	54.00÷	55.50	53					From 54.5 to 55.50m: 0 recovered in next run this run for evaluatio	and assigned to	_(7.40)		×
		(0)		56.50	98							- - - -		×
		(0)	56.50-	58.10	100					From 56.5 to 58.75m: S locally friable, grey brown, very sandy. From 56.7 to 57.6m: So (drillers description) At 56.95m: Possible si recovered as gravel.	Mottled orange			× — :
			-							From 58.1 to 58.50m: We rare sand and with occupance black veining, possible	asional vertical	- - - -		×
			58.10- -	59.70	93					Stiff fissured thinly grey, black and light CLAY/SILT with occasion beds and lenses of broare closely to medium smooth, frequently occ	grey slightly sandy onal black lignite own sand. Fissures spaced. horizontal.	58.75	-48.27	×
14/02 15/02	7.45 7.45	DRY	- -							surfaces. From 59.1 to 59.25m: Wareen silicified sands Below 59.25m: With rar	With occasional	(2.45)		×

Remarks (See notes & keysheets)

Scale 1:50

Drilling Method Cable Percussion & Rotary

Hole Dando 2000/Rotary Coring

Equipment

Drill Fluid Orientation (°) 0 Start End 02/02/2006 16/02/2006 **Dates Drilled**

Borehole Diameter 300mm to 6.20m 200mm to 52.05m 146mm to 82.30m

Logged by KD

02/03/2006

Casing Diameter 200mm to 7.45m

BOREHOLE No.

BH1

Ground Level Compiled by Checked by gs 23/02/2006 VOL

Location St Swithin's House

10.48 m OD

_		Water	Sample/Co	re Rec	overy		SPT		Depth	Ι	<u> </u>
&	Casing Depth	Depth (m) (Flush	Depth (m)	Туре			Blows /N	Description of Strata	(Thick-ness)	Level	Legen
Time	(m)	Return)	From To	TCR %	SCR %	RQD %	Core Size (mm)		(m)		ļ
		(0)	-59.70-61.30	82				Below 59.44m: With rare sand and with occasional shell framants. Below 60.0m: With frequent whole and proyster shell, occasional shelly bands a rare pyrite.			× ×
		0)	-61.30-62.90	94				Very stiff structureless, grey mottled brown, yellow brown and red, occasiona black CLAY/SILT with frequent coarse gravel sized carbonate concretions Below 61.75m: Calcretes absent.	61.20	-50.72	x x x x x x x x x x x x x x x x x x x
				17				From 62.65 to 62.90m: Sandy CLAY. From 62.9 to 63.4m: Persistent subvertical smooth fissure.	(2.30)		×
		(0)	62.90-64.50	46				Grey green mottled yellow clayey, sand GRAVEL. Gravel is subrounded to rounder fine to coarse of flint. From 63.7 to 64.50m: Possible core los from end of run.	63.50	53.02	× × ×
		(0)	64.50-65.40	100				From 64.5 to 64.90m: Dark grey slightle desilicified GRAVEL. Gravel is subrounted to rounded, medium and coarse of flint from 64.9 to 66.40m: Gravel is angular rounded fine to coarse.	ded to		
		(0)	65.40-66.40	87					- - - -		
		(0)	66.40-67.50	27				Below 66.40m: Brown mottled green, sil SAND with occasional lenses of blue gr silt. Sand is fine and medium. From 66.7 to 67.50m: Posible core loss from end of run.	ty :		
		(0)	67.50-68.20	0				Between 67.5 and 70.50m: Core loss - n recovery.			
		(0)	68.20-69.00	0					 - - - - - -		
		(0)	69.00-69.50	0			1		- - -		
		(0)	_69.50-70.50	0					<u> </u>		

(See notes & keysheets)

Scale 1:50

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Pic Ove Arup & Partners Limited

Contract No.

WAL050194

Figure No.

BH1 (7 of 10)

Drilling Method Cable Percussion & Rotary Borehole Diameter Casing Diameter 200mm to 7.45m **BOREHOLE No. BH1** 300mm to 6.20m 200mm to 52.05m Hole Equipment Dando 2000/Rotary Coring 146mm to 82.30m **Drill Fluid** Ground Level 10.48 m OD Orientation (°) 0 Location St Swithin's House Compiled by Logged by Checked by 02/02/2006 16/02/2006 **Dates Drilled** Start gs 23/02/2006 NON 02/03/2006 End SPT Blows /N Water Sample/Core Recovery Depth Depth (m) Date |Casing| No. Type (Thick-Level Legend & Depth Depth (m) Description of Strata (Flush Return) % Core Sîze (mm) ness) TCR % Time (m) SCR RQD From Τo % (m) GRAVEL (as previous sheet) 15/02 From 70.5 to 70.80m: Recovered as dark grey mottled green GRAVEL with occasional oyster shells. Gravel is subrounded to rounded coarse of flint. 16/02 70.80 | 60.32 (0) 70.50-71.50 100 Dark grey green speckled black silty slightly gravelly SAND with rare oyster shells. Sand is fine and medium. Gravel is of flint. (0) 71.50-72.50 95 (0) 72.50-73.50 92 73.50-75.00 (9.30)(0) 75.00-76.50 90 From 76.5 to 78.0m: Intact core recovered in next run assigned to this run for evaluation of TCR. (0) 76.50-78.00 68

Remarks (See notes & keysheets)

Scale 1:50

(0) \[78.00-79.30 \]

100

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Contract No.

WAL050194

Figure No.

BH1 (8 of 10)

Drilling Method Cable Percussion & Rotary Borehole Diameter **Casing Diameter** BOREHOLE No. **BH1** 300mm to 6.20m 200mm to 52.05m 146mm to 82.30m Hole 200mm to 7.45m Dando 2000/Rotary Coring Equipment Drill Fluid Ground Level 10.48 m OD Orientation (°) 0 Logged by Compiled by Checked by Location St Swithin's House 02/02/2006 16/02/2006 Dates Drilled Start gs 23/02/2006 (QU 02/03/2006 End Wate SPT Blows /N Sample/Core Recovery Depth (m) Depth Date Casing Type No. (Thick-Level Legend & Depth Depth (m) **Description of Strata** (Flush Return) % Core Size (mm) ness) Time SCR % (m) From Τσ (m) Moderately weak to moderately strong cream CHALK.
From 80.1 to 81.0m: Black occasionally mottled green, fine gravel to cobble sized angular flints.
Between 80.1 and 80.8m: Possible core loss. (0) 79.30-80.80 55 80.10 69.62 Between 80.8 and 81.0m: Possible core loss. (2.20)(0)80.80-82.30 83 16/02 82.30 -71.82 End of Borehole

Remarks (See notes & keysheets)

Scale 1:50

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Contract No.

WAL050194

Figure No.

BH1 (9 of 10)

Drilling Method Cable Percussion & Rotary Hole Equipment Dando 2000/Rotary Coring	Borehole Diameter Casing Diameter 300mm to 6.20m 200mm to 7.45m 200mm to 52.05m		BOREHOLE No.	BH1	
Saido Eddy Rotal y Cot Hig	146mm to 82.30m	146mm to 82.30m		Ground Level	10.48 m OD
0 Dates Drilled Start 02/02/2006 End 16/02/2006	Logged by Compiled by Checked by KD gs 02/03/2006 23/02/2006		Location St Swithin's House	10.40 N OD	
Description		Depth (m)	Level m OD		<u> </u>
Basement		**************************************	10.48	Flush stopcock box	cover.
		4.04	T 40	Pipe diameter 19mm	to 26.00m.
Concrete	Assistance Innivitation	4.86 5.86	5.62 4.62		
Cement/Bentonite Graut		2.86	4.62		
Bentonite Seal		24.00	-13.52	-	
Sand Filter		<u>25.50</u>	-15.02 -16.02	1	
Bentonite Seal Cement/Bentonite Grout		26.50 27.50	-16,02 -17.02	1	
		82.30	-71.82	Base of Hole	

Not to Scale

UGRO

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Contract No.

WAL050194

Figure No.

BH1 (10 of 10)

Drilling Method Rotary Cored Borehole Diameter Casing Diameter **BOREHOLE No.** BH₁A 300mm to 4.85m 100mm to 8.35m Equipment Diamond Drill Rig Drill Fluid Orientation (°) 0 Compiled by Checked by Logged by 15/01/2006 17/01/2006 **Dates Drilled** Start kd 10r 16/01/2006 End 23/03/2006 Water SPT Blows /N Sample/Core Recovery Depth Depth (m) Date Casing No. Туре Level (Thick-Legend & Depth Description of Strata Depth (m) (Flush Core Size (mm) ness) Return) TCR % Time (m) SCR RQD From То % % (m) MADE GROUND: Tarmac over concrete; Light brown poorly sorted fine to coarse sand matrix with 75% angular to subrounded poorly sorted flint aggregate up to 30mm with occasional voids up to 2mm. Rare 15/01 (0.40) 10mm rebar. VOID (Basement) (4.45)15/01 4.85 MADE GROUND: Concrete; Light brown poorly sorted fine to coarse sand matrix with 70 - 75% poorly sorted subangular to subrounded monomictic flint aggregate up to 30mm with 10 - 15% up to 4mm. 16/01 16/01 17/01 (3.50)17/01 8.35 End of Borehole Remarks Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out. Hole abandoned at 8:35m due to lack of progress through concrete footings. Moved and redrilled as BH1. Groundwater was not apparent during drilling. (See notes & keysheets) 2 Scale 1:50 Project Contract No. WAL050194 UGRD WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Figure No. BH1A (1 of 1)

30/4/03

Drilling Method Cable Percussion & Rotary Borehole Diameter Casing Diameter BOREHOLE No. **BH3** 300mm to 0.40m 200mm to 51.15m 200mm to 10.15m Hole Dando 2000/Rotary Coring Equipment 146mm to 81.00m **Ground Level** 14.88 m OD Logged by Compiled by Checked by Location Dates Drilled Start 30/01/2006 St Swithin's House gs 23/02/2006 WL 09/02/2006 07/02/2006 End Depth SPT U100 Date Casing Sample Details Depth Blows/N Drive mm to (Thick-ness) Level Legend Depth Description of Strata Water Depth (m) Time (m) Type No. (m) Τo Test From Result (m)30/01 MADE GROUND: Tiles over concrete; Light brown poorly sorted fine to coarse sand matrix with 75% angular to subrounded poorly sorted monomictic flint aggregate up to 30mm with occasional voids up to 2mm. Rare 10mm (0.40) 0.40 14.48 VOID (Basement) (2.75)3.15 11.73 MADE GROUND: Grey brown slightly silty sand and gravel. Gravel is subangular to subrounded fine to coarse of mixed lithologies including flint with occasional brick, clinker and concrete fragments. (Backfilled trial pit AP2) 3.95 8 1 (2.00)5.15 9.73 Dense becoming very dense, brown slightly silty SAND and GRAVEL grading to sandy gravel. Sand is medium and coarse. Gravel is subangular to subrounded fine to coarse of 5.15 ADDED 5.15 В 2 C36 6.55 ADDED 6.55 8 3 C52/ 170 (4.70)7.65 ADDED 7.65 8 4 C28/ 75 8.65 ADDED 8.65 5 В C40/ 125 9.85 В 6 9.85 5.03 Firm becoming stiff, orange brown mottled blue grey, CLAY with occasional lenses of Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out.
The floor was removed by concrete coring, allowing the casing to be dropped through the basement, where borehole BH3 was then drilled through the backfilled trial pit AP2.
An amount of water was added to facilitate boring and to maintain a positive hydrostatic head in granular strata Remarks (See notes & kevsheets) 3 from 5.15m to 8.65m.

4 The borehole was advanced by chiselling methods from 20.65m to 20.75m (30 minutes) and 30.15m to 30.25m (30 minutes).

Scale 1:50 5 Groundwater was encountered at 9.15m during boring, borehole dry by 9.85m.

JUGRO

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Contract No.

WAL050194

Figure No.

BH3 (1 of 10)

Drilling Method Cable Percussion & Rotary **Borehole Diameter** Casing Diameter **BOREHOLE No. BH3** 300mm to 0.40m 200mm to 51.15m 200mm to 10.15m Dando 2000/Rotary Coring Equipment 146mm to 81.00m Ground Level 14.88 m OD Compiled by Logged by Checked by Location St Swithin's House **Dates Drilled** 30/01/2006 Start gs 23/02/2006 09/02/2006 07/02/2006 End SPT Depth U100 Depth Casing Sample Details Date Blows/ Recovery mm Blows/N Drive mm to (Thick-ness) Leve! Legend & Depth Description of Strata Water Depth (m) Time (m) No. Type (m) From Test Result (m) orange silty sand and occasional pockets of selenite. (1.05)10.15 7 DRY 10.45-10.90 U 30/ 450 3.98 10.90 Stiff becoming very stiff extremely closely fissured dark grey brown CLAY with rare sand and occasional lenses or partings of light brown sandy silt. Sand is fine. 10.90 D 8 10.15 DRY 12.65 D 9 s23 13.15-13.65 10 В 10.15 14.15-14.60 DRY 11 U 14.60 D 12 30/01 10.15 DRY 31/01 10.15 10.15 15.65 D 13 S25 10.15 DRY 17.15-17.60 U 14 40/ 450 17.60 D 15 10.15 DRY 18.65 D 16 \$28 (15.65) Remarks 6 See installation details on final sheet. (See notes Groundwater was encountered at 49.15m during boring. & keysheets)

Scale 1:50

TUERO

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Contract No.

WAL050194

Figure No.

BH3 (2 of 10)

Casing Diameter 200mm to 10.15m Drilling Method Cable Percussion & Rotary Borehole Diameter BOREHOLE No. **BH3** 300mm to 0.40m **Hole** Equipment Dando 2000/Rotary Coring 200mm to 51.15m 146mm to 81.00m **Ground Level** 14.88 m OD Logged by Compiled by Checked by Location **Dates Drilled** 30/01/2006 Start St Swithin's House gs 23/02/2006 09/02/2006 07/02/2006 End Depth U100 SPT Sample Details Depth Date Casing to Blows/ Recovery mm (Thick-ness) Level Legend Depth Description of Strata Water Depth (m) Time (m) Type No. (m) From То Test Result (m) CLAY (as previous sheet) 10.15 DRY 20.15-20.55 40/ 400 U 17 20.65 m to 20.75 m : CLAYSTONE band, recovered as coarse, subangular gravel of mudstone. D **S36** 21.75 D 20 10.15 DRY 23.15-23.60 U 21 45/ 450 23,60 D 22 24.65 D 23 **S37** At 26.15m: Slightly sandy CLAY 45/ 400 10.15 26.15-26.55 DRY U 24 26.55 D 25 26.55 -11.67 Very stiff extrememly closely fissured, locally friable dark grey brown, locally slightly sandy CLAY with occasional shell fragments and rare partings of light brown sand. 27.65 D S45 26

Remarks (See notes & keysheets)

10.15

DRY

29.15-29.60

29.60

27

28

D

Scale 1:50

Project

60/ 450

WALBROOK, LONDON - SITE INVESTIGATION Minerva Pic Ove Arup & Partners Limited Contract No.

WAL050194

Figure No.

BH3 (3 of 10)

Drilling Method Cable Percussion & Rotary Borehole Diameter **Casing Diameter BOREHOLE No. BH3** 300mm to 0.40m 200mm to 51.15m Hole 200mm to 10.15m Equipment Dando 2000/Rotary Coring 146mm to 81.00m **Ground Level** 14.88 m OD Compiled by Checked by Location St Swithin's House Logged by 30/01/2006 09/02/2006 **Dates Drilled** Start gs 23/02/2006 End 07/02/2006 Depth U100 Casing Sample Details Depth Date Blows/ Recovery mm to Blows/N Drive mm (Thick ness) Level Legend Depth **Description of Strata** Water Depth (m) Time (m) No. Type (m) From Τo Test Result (m) CLAY (as previous sheet) 30.15m to 30.25m: CLAYSTONE band **3**0.15 29 В 30.65 D 30 S47 10.15 DRY 32.15-32.60 31 U 60/ 450 32.60 32 33.65 D 33 S50 10.15 35.15-35.60 U 34 65/ 450 35.60 35.65 **S53** 10.15 36.65-37.00 37 DRY U 65/ 350 31/01 10.15 DRY 01/02 10.15 DRY 37.50-37.95 **S52** 10.15 DRY 38.15-38.60 U 40 65/ 450 (23.60) 38.60 38.65 S68

Remarks (See notes & keysheets)

10.15

DRY

Scale 1:50

39.65-40.10

U

43

Project

65/ 450

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Below 39.65m: Becoming slightly sandy CLAY

Contract No.

WAL050194

Figure No.

BH3 (4 of 10)

Drilling Method Cable Percussion & Rotary Borehole Diameter Casing Diameter 200mm to 10.15m **BOREHOLE No. BH3** 300mm to 0.40m 200mm to 51.15m 146mm to 81.00m Hole Dando 2000/Rotary Coring Equipment 14.88 m QD **Ground Level** Logged by Compiled by Checked by Location St Swithin's House KD 07/02/2006 **Dates Drilled** Start 30/01/2006 gs 23/02/2006 (WL 09/02/2006 End Depth SPT U100 Sample Details Depth Date Casing Blows/N Drive mm Blows/ Recovery (Thick-ness) to Level Legend Depth & Description of Strata Water Depth (m) Time (m) Type No. (m) Test From Τo Result (m) 40.10 40.15 44 45 CLAY (as previous sheet) S51/ 225 10.15 DRY 41.15-41.60 U 46 65/ 450 Below 41.6m: Becoming friable. 47 48 41.60 41.65 D S57/ 255 10.15 DRY 42.65-43.10 49 65/ 450 43.10 43.15 50 51 S60/ 275 10.15 44.15-44.50 DRY 52 υ 70/ 350 53 54 S52/ 200 10.15 DRY 45.65-46.10 U 55 65/ 450 56 57 S54/ 255 10.15 47.15-47.60 58 70/ 450 59 60 S48/ 225 10.15 DRY 48.65-49.10 U 61 70/ 450 D 62 63 S53/ 225

Remarks (See notes & keysheets)

Scale 1:50

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Contract No.

WAL050194

Figure No.

BH3 (5 of 10)

Drilling Method Cable Percussion & Rotary Borehole Diameter Casing Diameter BOREHOLE No. **BH3** 300mm to 0.40m 200mm to 51.15m Hole 200mm to 10.15m Equipment Dando 2000/Rotary Coring 146mm to 81.00m Drill Fluid Ground Level 14.88 m OD Orientation (°) 0 Logged by Compiled by Checked by Location **Dates Drilled** Start 30/01/2006 St Swithin's House gs 23/02/2006 09/02/2006 0/ End 07/02/2006 Water Sample/Core Recovery SPT U100 Depth (m) Date Casing Depth Blows /N Blows/ Rec. mm Type No (Thick-Level Legend & Depth Depth (m) Description of Strata (Flush Core Size (mm) ness) Time (m) Return) TCR SCR ROD From То (m)Very stiff fissured grey blue mottled orange brown CLAY. Fissures are closely to widely spaced, subhorizontal with slickensides. Presistent subveritcal fissures. 50.15 35.27 10.15 DRY 50.65-51.05 υ 64 80/ 400 D 65 66 S40/ 105 01/02 10.15 DRY From 51.58 to 51.65: With occasional lenses of light grey fine to medium sand and grey silt. 07/02 10.15 51.65-51.60 100 (0) _51.60-52.50 70 At 52.10m: Subhorizontal, stepped, smooth fissure.
Below 52.10m: Orange brown mottled blue grey. (0) 52.50-54.00 100 Below 53.70m: Mottled red. (7.60)Below 54.0m: Mottled yellow.
Below 54.15m: Light grey mottled yellow brown and red brown, becoming fine sandy.
From 54.4 to 55.0m: Sandy SILT/CLAY. Sand 54.00-55.50 100 From 55.55 to 55.90m: Light brown silty SAND with occasional lenses of clay. Sand is fine and medium.
Below 55.90m: Stiff brown mottled grey blue sandy CLAY with occasional laminations of light brown and grey fine sand and silt. 55.50-57.00 97. (0) Below 56.60m: Mottled yellow. Below 57.0m: Stiff to very stiff dark brown mottled grey blue CLAY/SILT. (0) F57.00-58.50 96 57.75 -42.87 Very stiff, fissured thinly laminated, grey becoming dark grey, sandy CLAY/SILT with occasional lignite beds. Fissures are closely spaced, horizontal and smooth, frequently occuring along lignite surfaces. Sand is fine.
Below 58.5m: With occasional shell fragments 07/02 10.15 08/02 10.15 fragments. (2.21)Below 59.0m: Friable, dark grey, sandy with frequent shell fragments. (0) 58.50-60.00 98 Below 59.7m: Very shelly with little matrix. Ocassional weakly cemented limestone bands. 59.96 45.08 Remarks

Scale 1:50

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Contract No.

WAL050194

Figure No.

BH3 (6 of 10)

Drilling Method Cable Percussion & Rotary Equipment

Dando 2000/Rotary Coring

Drill Fluid
Orientation (°) 0
Dates Drilled Start 30/01/2006
End 09/02/2006
Sample/

Borehole Diameter 300mm to 0.40m 200mm to 51.15m 146mm to 81.00m Casing Diameter 200mm to 10.15m

BOREHOLE No.

14.88 m OD

BH3

Drill Fluid Orientation (°) Dates Drilled) n			Lon	ged by	Com	piled by Checked by	Ground Level Location	14.88	m OD		
			30/01/2006 09/02/2006		KD	02/2006	gs	2/2006 VOL	St Swithin's House			
		Water		re Recovery	<u> </u>	SPT	23/0	2/2000	1	Donah		
&	Casing Depth	Depth (m) (Flush	Depth (m)	Type No.		Blows /N Core		Description (of Strata	Depth (Thick- ness)	Level	Legen
Time	(m)	Return) %	From To	TCR SCR % %	RQD %	Size (mm)				(m)		
		(0)	60.00-61.50	99.				Very stiff, fissured, brown and red, slightle CLAY/SILT with frequen gravel sized carbonate Fissures are closely thorizontal with slicker	grey mottled yellow y mottled black t medium to coarse concretions. o medium spaced, nsides.	59.96	-45.08	× × ×
		(0)	61.50-63.00	40		L. L		From 62.15 to 6 3.0 m: P At 62.85m: Grey sandy grayel. Gravel is suba		(3.04)		xxxxxx
		(0)	63.00-63.60	100				Grey green mottled yel mottled red, clayey sa is subangular to round	/	_63.00	-48.12	×
		(0)	-63.60-64.50	90				of flint. From 63.0 to 63.25m: C slightly desilicified	oarse, rounded flint gravel.	- - - -		
		(0)	64.50-66.00	20.		- Addition of the state of the		From 64.5 to 66.0m: Po throughout run.	ssible core loss	(4.85)	1	
	:	(0)	66.00-67.50	90.				Below 66.40m: With occ fragmented oyster shel Below 66.60m: With fre shells, becoming less Below 67.20m: Sand is dark green with black	l. equent oyster clayey, more sandy. fine to coarse.	1	-	
		(0)	67.50-69.00	80				Dark green grey, speck clayey, slightly grave occasional oyster shel friable silt. Rare sub bioturbation. Sand is Gravel is of flint. Below 68.50m: Grey mot with black speckling,	elly SAND with ls and pockets of overtical fine and medium.	67.85	-52.97	
		(0)	69.00-70.50	100						- - - - - - - -		
Rema	rke	<u> </u>	<u>I</u>	1 . l	Ь			<u> </u>		<u>.L</u>	<u> </u>	

Remarks (See notes & keysheets)

Scale 1:50

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No.

WAL 050194

Figure No.

BH3 (7 of 10)

Drilling Method Cable Percussion & Rotary Hole Equipment 2000/Rotary Coring

Borehole Diameter 300mm to 0.40m 200mm to 51.15m 146mm to 81.00m Casing Diameter 200mm to 10.15m

BOREHOLE No.

BH3

Drill Fl Orient Dates	uid ation (° Drilled	Start	30/01/2006 09/02/2006			Log	ged by	Corr	piled by 2/2006	Checked by	Ground Level Location St Swithin's House	14.88	m OD	•
Date &	Casing Depth	End Water Depth (m)	Sample/Co		overy No.	1 07/	SPT Blows /N	23/0	2/2006	Description	of Strata	Depth (Thick-	Level	Lege
Time	(m)	(Flush Retum) %	From To	TCR %	SCR %	RQD %	Core Size (mm)			# oon past,	o, otrata	ness) (m)		
			-					•	SAND (a	s previous she	et)	-		
			<u> </u>	ļ			;					<u> </u>		
			! - -									ļ		
		(0)		72.								<u> </u>		:: ·
		(,,										-		
8/02	10.15											-		
9/02	10.15	, , , , , , , , , , , , , , , , , , , ,	- -									<u>-</u>		:: ;:
												-		
		(0)	72.00-73.50	97.						•		Ē	:	
			 - -	İ								<u>-</u>		
				 										
												(11.85)		
		(0)	73.50-75.00	100								-	2	
									}			-		
			-									Ē		· · ·
			-									-		
												-		
		(0)	75.00-76.5D	80								[
			-									-		
				-								-		: ;
				Ì								-		
		(0)	76.50-78.00	99.			1							:: ;;
			-									Ē		
												-		
			-									<u> </u>		
		(0)	78.00-79.50	94.								ŧ		
												-		
		1.	-	-								[12.7
			• • •			į			Moderat	ly weak to mode	eratly strong cream	79.70	-64.82	
emarl			<u> </u>		L				CHALK.			-		F

(See notes & keysheets)

Scale 1:50

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No.

WAL050194

Figure No.

BH3 (8 of 10)

Drilling Method Cable Percussion & Rotary

Dando 2000/Rotary Coring

Drill Fluid Orientation (°) 0

Equipment

Borehole Diameter 300mm to 0.40m 200mm to 51.15m 146mm to 81.00m

Casing Diameter 200mm to 10.15m

BOREHOLE No.

BH3

Ground Level Logged by KD 07/02/2006 Location St Swithin's House Compiled by Checked by

14.88 m OD

Dates Drilled Start 30/01/2006 End 09/02/2006			Log KD	ged by '02/2006	Com gs	piled by	Checked by	Location St Swithin's House							
		Water		mple/Co	ro Poo		10//	U2/2006	23/0	2/2006	1000				
	Casing	Water Depth (m)	341	mpte/Co			ı	SPT Blows /N					Depth		1
&	Depth		Depth	n (m)	Type	No.		/N			Description of	of Strata	(Thick-	Level	Legen
Time	(m)	(Flush Return)	l		TCR	SCR %	RQD	Core Size			2 occupation (or ottata	ness)		
		Return) %	From	То	%	%	%	(mm)					(m)		
			ŀ							From 79	.7 to 79.80m: B	lack occasionally			ليبانيا
		(0)	79.50-	81.00	74.	60.	32	!		mottle	green, fine gra	lack, occasionally avel to cobble	<u> </u>		11,11
			<u>L</u>							sized,	angular flints.		(1.30)		11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
			F										<u> </u>		11,1,1,1
	40.45		ţ							At 80.8	2m: Subhorizonta	al. stepped. rough	1		1, 1, 1, 1,
09/02	10.15	L_	ŀ							and tig	ht fracture.	al, stepped, rough	‡		1,1,1,1
			-					1			End of Bo		-[81.00	-66.12	
			t								E11G 01 B01	renote	Į.		
			-					1 1					į į		1
			<u> </u>			ŀ							-		1
			-			1		l i		•			į .		
			<u> </u>		1								-		1
			┝										<u> </u>		1
			[1								i i		1
			<u> </u>		1			[Į.		1
			-		1	1		1 1					Ĺ		1
			ļ.		1								-		1
ļ		1	t]										
			Ĺ.										_		ļ
ļ		1	ţ										F		
ļ			-				ľ	i							1
1			Ľ.					i I					· ·		1
į			ŧ										Ţ '		
1			Į.										t l		1
			<u>-</u>										-		
			-]
													-		1
			-										-		1
			<u> </u>										t '		1
			_		1								Į.		ì
			-										ţ '		
			-					1					-		
			<u> </u>										Ę l		
					•			i l					į į		
			-		•								-		
			-		·								Į.		
-															
			<u> </u>										[- '		
			-										į į		
- 1			ļ										-		
ļ			<u> </u>										F.		1
- 1	1	,	-										į.		1
	i	:	<u> </u>						ļ				}		1
			-						ł				<u></u>		1
			<u> </u>				i						į į		1
			t										[1
			-										ţ		1
													-		
			-										ļ		
			<u> </u>										Ŀ		
			t				ł						F		
ļ	1						ļ						<u> </u>		1
1			Ĺ] .	:	l						}		1
1	ļ		ļ			· [J				ļ		1
			Ī						i				}		1
			<u>-</u>				l						Į.		
			_		1 1								F /		
			_			ł							F		
			-			ļ							į l		
			<u>:</u>			İ							<u> </u>		
			1				Į	1					+		1
			-		1	ı	i	. 1					1		
ŀ							ſ	1					<u> </u>		
			<u>-</u>												

Remarks (See notes & keysheets)

Scale 1:50

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No.

WAL050194

Figure No.

BH3 (9 of 10)

Drilling Method Cable Percussion & Rotary Hole Equipment Dando 2000/Rotary Coring	Borehole Diameter 300mm to 0.40m 200mm to 51.15m	Casing D 200mm t	Diameter to 10.15m	BOREHOLE No. BH3
0 Dates Drilled Start 30/01/2006 End 09/02/2006	200mm to 51.15m 146mm to 81.00m Logged by Compi KD gs 07/02/2006 23/02,	iled by C	Checked by	Ground Level 14.88 m OD Location St Swithin's House
Description	1	Depth (m)	Level m OD	
Basement		(III)	14.88	Flush lockable stopcock box cover.
0	ker	3.15	11.73	Pipe diameter 50mm to 10.00m.
Concrete Rentonito Cool		4.15 5.15	10.73 9.73	
Bentonite Seal Pea Gravel Filter		_10.00	4.88	
Bentonite Seal		10.00	3.28	
Cement/Bentonite Grout				
Remarks		81.00	-66.12	Base of Hole
(See notes SOmm gas monitoring standpipe to & keysheets)	10.0m			

Not to Scale

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Contract No.

WAL050194

Figure No.

BH3 (10 of 10)

Drilling Method Rotary Cored Borehole Diameter 107mm to 0.38m 50mm to 0.58m **Casing Diameter BOREHOLE No.** C₁ Equipment Diamond Drill Rig Drill Fluid Ground Level 6.54 m OD Orientation (°) 0
Dates Drilled Start 20/01/2006 Location Wall Core Logged by PB Compiled by kd Checked by St Swithin's House

ates	Drilled	Start End	20/01/2006 20/01/2006			PB 02/	- ′03/2006	kd Wall Core - St Swithin's House
ate	Casing	Water Depth (m)	Sample/Co	Type	ı i	1	SPT Blows	Depth
& ime	Depth (m)	(Flush Return)	Depth (m) From To	TCR		RQD	/N Core Size (mm)	Description of Strata (Thick-ness)
0/01		%	FIGUR 10	%	70	%	(mm)	MADE GROUND: Concrete; Light grey poorly (0.25) sorted fine to medium sand matrix with 65 (0.25)
/01		 -	0.38-0.58	D	1			to subrounded monomictic flint aggregate (0.01)
			<u>-</u>					At 0.07m: 12mm rebar. (0.12)
			-					MADE GROUND: Black bituminous material 0.58 with fine to medium sand.
			<u>-</u>					MADE GROUND: Red bricks with mortar.
								MADE GROUND: Light brown silty sand and gravel. Gravel is subangular fine and medium of concrete, brick and flint with occasional iron and clinker.
			- - -					End of Borehole
			<u>-</u>					
			<u>-</u> -					
			<u>.</u> -					
:								
			<u>-</u>					
		,	-					
			<u>-</u>					
			- -					
			- -					
			-					
			[- -					
			-					
			 - -					
			-					
			<u>.</u> -					
			<u>-</u>					
	;		-					
			- -					
1			-					
į			<u> </u>					

Remarks 1 (See notes 2 & keysheets) 2 Prior to drilling a Cable Avoidance Tool (CAT) survey was carried out.

After coring, a hand auger was inserted into the hole in order to obtain a 200mm soil sample from behind the

Concrete.
On completion the core hole was reinstated with concrete.
Groundwater was not apparent during drilling.

Scale 1:50

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No.

WAL 050194

Figure No.

C1 (1 of 1)

Drilling	Drilling Method Rotary Cored					Bore	ehole D	iameter	Casi	ing Diameter	BOREHOLE No.		C2	
Equips	nent	Diamo	ond Drill Rig			,,,	THAIL CO	1.33					·	
Drill Fl	uid ation (°	١ ٥				Log	ged by	C	npiled by	Checked by	Ground Level	7.69	m OD	ļ
	Drilled		16/01/2006 16/01/2006			PB	-	kd)3/2006	Checked by	Location Wall Core - Walbrook	House		
		Water	Sample/Co	re Rec	overy	02/	03/200 SPT	6 13/1	13/2006	100		Danah		
Date &	Casing Depth	1 11111	Depth (m)	Type	No.		SPT Blows /N			Description	of Strata	Depth (Thick-	Level	Legend
Time	(m)	(Flush Return) %		TCR %	SCR	RQD %	Core Size (mm)			Description	or Ottata	ness)		
16/01		70		70	70	70	(mm)		MADE	GROUND: Red brick	with painted	(m)		XXXXXX
,			•						surfac	ce.	with partited	(0.10) 0.10 (0.05)		
			F						AOID		/	(0.15		
			Ē						MADE (ROUND: Concrete;	Light grey poorly	(1.20)		
			-						- 75% flint	subangular to sul	Light grey poorly sand matrix with 70 brounded monomictic 25mm. Rare voids up	-		
16/01			ŧ									1.35		****
			-						Connec	ted voids approx	imately 70mm. /	· ''''		
			Ē						absent	"3" Matrix local cted voids approx 1.21 to 1.35m: Ma t with interconne- cimately 70mm.	cted voids	-		
			-						111111	End of Bo		-		
			<u>E</u>				:							
			ļ.				:					-		
			[<u> </u>		
			F									-		
			<u> </u>									ŧ l		
			Ė									† I		
			[È l		
			F									-		
			[
			<u> </u>									- !		
			[
			-											
			<u> </u>									-		
			ļ									[
			-								•	-		
			<u>.</u>		.									
			Ē									-		
			;									Ę I		
			-									-		
			-									[
			E									Ė l		
			<u>E</u>									<u> </u>		
			-									[
			<u> </u>			;						;		
			<u> </u>									[
												<u> </u>		
			-									[
			<u> </u>											
[<u>-</u>									[
			<u> </u>									;		
Remar	ks 1	Dric-	to deillian -	C-L'		. ءلم أي		1 (017)	<u> </u>			Г		<u> </u>
(See not	ets) 2	On com	pletion the c	ore h	ole w	as r	einsta	ted wit	, survey th concre	was carried out. ete.				
	5	Ground	water was not	appa	rent'	aur i	ng dri	lling.						
			•											
Scale 1:5	· · · · · · · · · · · · · · · · · · ·		<u> </u>				oject	_						
		Ti	GRO			"	WA	LBROOK	LONDON	- SITE INVESTIGAT	Contract No.	WAL	050194	
							Mi	nerva F	Plc	ers Limited	Figure No.			

Figure No.

C2 (1 of 1)

Drilling Method Rotary Cored Borehole Diameter **Casing Diameter BOREHOLE No. C3** 107mm to 0.39m Equipment Diamond Drill Rig 50mm to 0.59m

Drill Fluid Orientation (°) 0 Compiled by Logged by Checked by Dates Drilled Start 28/01/2006 KD 703 /2006 kd 100

Ground Level 7.69 m OD Location Wall Core - Walbrook House

	· · · ·	End	28/01/2006					6 13/0	/2006 W Matter core water core materials	
Date	Casing	Water Depth	Sample/Co		T		SPT Blows		Depth	<u>"</u>
& Time	Depth (m)	(m) (Flush Retum)	Depth (m)	Type	No. SCR	ROD	/N Core Size (mm)		Description of Strata (Thickness)	Legen
	,	%	From To	%	%	%	(mm)		(m)	
28/01									MADE GROUND: Red bricks with mortar and / (0.10)	XXXX
			<u> </u>						painted surface. /[0.10 (0.09)	
28/01		<u> </u>	- 0.39-0.59	D	3				VOID / [0.19]	
			‡			1			MADE GROUND: Concrete; Light grey poorly 0.20) sorted fine to medium sand matrix with 70 (0.20) - 75% subangular to subrounded monomictic flint aggregate up to 25mm. Rare voids up	
			<u> </u>						sorted fine to medium sand matrix with 70 (0.20) - 75% subangular to subrounded monomictic 0.59	
			ļ						- 75% subangular to subrounded monomictic 0.59 flint aggregate up to 25mm. Rare voids up 1.59 to 4mm.	
			ļ.						At 0.23m: 24mm perpendicular to 12mm // i	
			F]			rebar. At 0.35m: 24mm rebar.	
			[MADE GROUND: Brown slightly silty sand	1
			[-						and gravel. Gravel is subangular to subrounded fine to coarse of flint and concrete with occasional brick and rare	
			<u>t</u>						concrete with occasional brick and rare	
			<u>}</u>						charcoal and clinker fragments.	
			ţ	1	1				End of Borehole	
			ţ						<u> </u>	
			<u> </u>						-	
			<u> </u>						1	
			<u> </u>						<u>-</u>	1
			ļ.						<u> </u>	
			F						;	
			F		ŀ				-	
	ŀ		}						ļ. <u>1</u>	
			E .						<u> </u>	
	İ		E						Į į	
			<u> </u>						<u> </u>	
			<u>t</u>						F I	
			<u> </u>						[
			ļ .						<u>†</u>	
		İ	‡						<u> </u>	
		1	<u> </u>						<u> </u>	
			ļ.						<u> </u>	
			F						!	
		Ì	F]			;	
		Ì	E						;	
			<u>-</u>			-			F- 1	
			<u>t</u>						[
			<u> </u>						E I	
			ţ.		1				[
			ļ.		1				į l	
			F						[-	
			F						‡	
		,			1				<u> </u>	
			E						ţ	
			E						ţ l	
			ŀ						F	
			<u>t</u>						ţ l	
	}		ŀ.						ţ.	
			<u> </u>						F .	
		i	<u>L</u>						ţ	
	ł	l	Ī	1	I	I	I	}	F	1

Remarks 1 (See notes 2 & keysheets) 2 Prior to drilling a Cable Avoidance Tool (CAT) survey was carried out.

After coring, a hand auger was inserted into the hole in order to obtain a 200mm soil sample from behind the concrete.
On completion core hole was reinstated with concrete.
Groundwater was not apparent during boring.

Scale 1:50

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No.

WAL 050194

Figure No.

C3 (1 of 1)

Drilling Method Rotary Cored							ehole D	iameter	Casing Diameter	BOREHOLE No.		C4	_
Equipr		Diamo	ond Drill Rig			'`	THE CO	1.70111					
Drill Fl Orient	uid ation (°) 0				100	ged by	Com	piled by Checked by	Ground Level Location	8.61	m OD	
Dates	Drilled	Start End	03/02/2006 03/02/2006			PB		kd 6 13/0	' / / / / / / / / / / / / / / / / / / /	Wall Core - Granite H	ouse		
Date	Casing	Water Depth	Sample/Co		-		SPT Blows	1,5,0	5,2000		Depth		
&	Depth	(m) (Flush	Depth (m)	Type	_		_ /N _		Description o	of Strata	(Thick- ness)	Level	Legend
Time		Return)	From To	TCR %	SCR %	RQD %	Core Size (mm)				(m)		
03/02								ì	MADE GROUND: Render wit over red bricks and mor	h painted surface	- (0.12)	Ψ.	
			[١	L	7.81	0.12 (0.07) - 0.19 (0.11)		
			<u> </u>						MADE GROUND: Cemented r sandstone with mortar g thick and voids up to 4 At 0.18 to 0.19m: Black	reater than 70mm	(0.11) 0.30		
			<u>-</u>								_(1.40)		
			<u>-</u>					!	MADE GROUND: Red bricks MADE GROUND: Rubble fil				
03/02			F						MADE GROUND: RUDDLE TIL	tea voia.	-		
			<u> </u>						End of Bor	ehole	1.70		
			-						2 3. 23.		-		
			-								•		
			<u> </u>								-		
			_								:		
			<u>-</u>								- :		
			_								<u>.</u>		
											-		
			<u>-</u>								-		
			-								:		
			-								- -		
			•								:		
			<u>.</u>								· -		
			-								- -		
			- - -								· ·		
			- -								· -		
			-								<u> </u>		
			- -								-		
											.		
			- -								:		
			-								-		
!													
			<u>-</u> -								· -		
											·		
											-		
			_										
									-	ŀ	-		
			- -				-				<u> </u>		
		Ì	- • -								·		
			<u>-</u>								_		
Remari (See note & keyshe	ets) 2	un com	to drilling a pletion the co water was not	ore h	ole w	as r	einstat	ted with	survey was carried out. concrete.				<u> </u>
								-					
Scale 1:5	0												
		_fu	G R 10			Pro	ject WAL	_8ROOK	LONDON - SITE INVESTIGAT	Contract No.	WALC	50194	
							Mir	nerva Pl					
							046	- viah e	Cracuets Limited	Figure No.	C4 (1 c	of 1)	

Drilling Method Rotary Cored Borehole Diameter **Casing Diameter** BOREHOLE No. C5 107mm to 1.70m Equipment Diamond Drill Rig 50mm to 1.90m **Drill Fluid** Ground Level 7.83 m OD Orientation (°) 0 Logged by Compiled by Checked by Location Dates Drilled 14/01/2006 14/01/2006 Start Wall Core - St Swithin's House ll De End 03/03/2006 13/03/2006 Water Depth (m) SPT Blows /N Sample/Core Recovery Date Casing Depth Туре Depth (Thick-Legend Depth (m) (Flush Return) % **Description of Strata** Core Sîze (mm) Time (m) ness) SCR % RQD % TCR From To (m) 14/01 MADE GROUND: Plaster over red bricks and (0.24) 0.24 (0.16) 0.40 CAVITY MADE GROUND: Concrete; Light grey poorly sorted fine to medium sand matrix with 70 - 75% subangular to subrounded monomictic flint aggregate up to 25mm. Rare voids up to 4mm.

At 0.95m: Dark brown black bituminous material with coarse sand.
Below 0.95m: With rare voids up to 10mm.
From 1.5 to 1.7m: Drilled in 85mm core. (1.30)14/01 1.70-1.90 D 5 MADE GROUND: Dark brown silty sand and gravel. Gravel is subangular fine and medium of flint and red and yellow brick with occasional charcoal and wood fragments. End of Borehole Remarks 1 Prior to drilling a Cable Avoidance Tool (CAT) survey was carried out. After coring, a hand auger was inserted into the hole in order to obtain a 200mm soil sample from behind the (See notes & keysheets) 2 On completion the core hole was reinstated with concrete. Groundwater was not apparent during drilling. Scale 1:50 Contract No. WAL050194 WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc

Ove Arup & Partners Limited

Figure No.

C5 (1 of 1)

Drilling Method Rotary Cored Borehole Diameter **Casing Diameter BOREHOLE No.** C₆ 107mm to 1.90m Equipment Diamond Drill Rig Drill Fluid Ground Level 6.11 m OD Orientation (°) 0 Logged by

Compiled by

Checked by

Location

20/01/2006 20/01/2006 PB 03/03/2006 **Dates Drilled** Start Wall Core - St Swithin's House 1100 10/03/2006 End Water Depth (m) Sample/Core Recovery SPT Depth Casing Date Blows /N Level Legend (Thick-Depth Depth (m) **Description of Strata** (Flush Retum) % Core Size (mm) ness) Time (m) SCR % RQD % TCR From To (m) MADE GROUND: Concrete; Light grey poorly sorted fine to medium sand matrix with 65 - 70% poorly sorted subangular to rounded monomictic flint aggregate up to 25mm. Rare voids less than 4mm. At 0.21m: 10mm rebar. From 0.28 to 0.30m: Dark brown black bituminous material with coarse sand. 20/01 (0.30) 0.30 (0.11) 0.41 (0.17) 0.58 MADE GROUND: Yellow bricks with mortar, some voids up to 15mm. (1.32)MADE GROUND: Recovered as predominantly medium to coarse flint gravel with trace matrix. (Possibly filled void). 20/01 1.90 MADE GROUND: Slightly friable very light grey fine to medium sand matrix with 60 70% subangular to rounded monomictic flint aggregate. Occasional voids up to 10mm. From 0.72 to 0.80m: Interconnected voids End of Borehole

Remarks 1 (See notes 2 & keysheets) 2

Prior to drilling a Cable Avoidance Tool (CAT) survey was carried out. On completion the core hole was reinstated with concrete.

Groundwater was not apparent during drilling.

Scale 1:50

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No.

WAL050194

Figure No.

C6 (1 of 1)

Drilling Method Rotary Cored Borehole Diameter Casing Diameter BOREHOLE No. **C7** 107mm to 2.85m 50mm to 3.05m Equipment Diamond Drill Rig Drill Fluid Ground Level 6.80 m OD Orientation (°) 0 Logged by Compiled by Checked by Location 23/01/2006 23/01/2006 **Dates Drilled** Start Floor Slab - St Swithin's House End 03/03/2006 10/03/2006 Water Sample/Core Recovery ŞPT Depth (m) Date Casing Depth Blows /N Type No. (Thick-Level Legend Depth Depth (m) Description of Strata (Flush Core Size (mm) ness) Time (m) Return) % TCR SCR ROD From То (m) MADE GROUND: Concrete; Light brown grey medium to coarse sand matrix with 60 - 65% moderately well sorted, fine, angular to subrounded mixed aggregate up to 10mm. 20 - 25% voids up to 10mm. 23/01 (0.07) 6.73 MADE GROUND: Concrete; Light brown grey medium to coarse sand matrix with 65 - 75% poorly sorted fine to coarse, angular to rounded monomictic flint aggregate up to 30mm with occasional (10%) voids up to (2.73)8mm.
At 0.45m: subhorizontal rough fracture.
At 0.68m: 25mm rebar.
From 0.75 to 0.77m: Black bituminous band with 75 - 80% light grey coarse sand to fine gravel aggregate.
Below 1.55m: 80 - 85% aggregate.
At 1.67m: Voids up to 30mm, locally trace matrix matrix.
At 1.95m: Subhorizontal smooth fracture (possibly drilling induced). 2.85-3.05 2.80 (0.05) 2.85 (0.20) 3.05 D 4.00 23/01 MADE GROUND: Concrete; Light grey slightly friable, silty sand matrix with 50 - 60% fine to coarse, subangular to subrounded, monomictic flint aggregate. 3.95 3.75 Firm grey brown slightly sandy SILT/CLAY with frequent lenses of orange brown silty sand. Sand is fine and medium. (Possibly Made Ground). End of Borehole Remarks Concrete core C7 was done vertically between trial pit AP9 and the wall.
Prior to drilling a Cable Avoidance Tool (CAT) survey was carried out.
After coring, a hand auger was inserted into the hole in order to obtain a 200m soil sample from behind the (See notes & keysheets) 2 concrete. On completion the core hole was reinstated with concrete. Groundwater was not apparent during drilling. Scale 1:50 Project Contract No. WAL050194 WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Figure No.

C7 (1 of 1)

Drilling Method Rotary Cored Borehole Diameter Casing Diameter **BOREHOLE No. C8** 50mm to 2.80m Equipment Diamond Drill Rig Drill Fluid Ground Level 6.80 m OD Orientation (°) 0 Logged by Compiled by Checked by Location Dates Drilled 13/02/2006 Start Inclined Core - St Swithin's House COR End 13/02/2006 03/03/2006 10/03/2006 Water SPT Blows /N Sample/Core Recovery Date Casing Depth (m) Depth Туре Level (Thick-Legend & Depth Depth (m) Description of Strata (Flush Core Size (mm) ness) Time (m) TCR % SCR % RQD % Return) Τo From (m) 13/02 MADE GROUND: Red bricks and mortar. (0.10) 0.10 MADE GROUND: Concrete; Light grey poorly sorted, fine to medium sand matrix with 70 - 75% subangular to subrounded monomictic flint aggregate up to 25mm. Rare voids less than 4mm.
At 0.43m: 15mm rebar.
At 0.95m: 30mm interconnected voids, possibly drilling induced.
From 1.0 to 1.02m: Black bituminous band. From 1.3 to 1.5m: Locally with occasional voids up to 5mm. (1.55)MADE GROUND: Recovered as medium to coarse flint gravel with a little friable matrix of fine to medium cemented sand. (Possible filled void). (0.50) MADE GROUND: Concrete; Grey poorly sorted fine to medium sand matrix with 70 - 75% well sorted, angular to subrounded monomictic flint aggregate up to 25mm. 13/02 2.60-2.80 D 8 Rare voids. From 1.90 to 1.95m: Matrix is locally friable. Firm to stiff orange brown gravelly clay with occasional lenses of sand. Gravel is subangular to subrounded fine and medium of flint. (Possibly Made Ground) End of Borehole Remarks Concrete core C8 was done inclined between trial pit AP9 and the wall.
Prior to drilling a Cable Avoidance Tool (CAT) survey was carried out.
After coring, a hand auger was inserted into the hole in order to obtain a 200mm soil sample behind the (See notes & keysheets) 2 3 concrete. On completion the core hole was reinstated with concrete. Groundwater was not apparent during drilling.

Scale 1:50

UGRO

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Contract No.

WAL050194

Figure No.

C8 (1 of 1)

Drilling Method Rotary Cored Borehole Diameter **Casing Diameter** BOREHOLE No. C9 107mm to 2.30m Equipment Diamond Drill Rig Drill Fluid Ground Level 7.11 m OD Orientation (°) 0 Logged by Compiled by Checked by Location Floor Slab - Walbrook House Dates Drilled Start 04/02/2006 WAL 02/03/2006 04/02/2006 14/03/2006 End Wate Sample/Core Recovery SPT Blows /N Depth (m) Depth Date Casing No. Type (Thick-Level Legend & Depth Depth (m) Description of Strata (Flush Return) % Core Size (mm) ness) Time (m) TCR % SCR % RQD From To % (m) MADE GROUND: Plastic flooring over concrete; Light grey brown fine to coarse sand matrix with 70% fine, angular to subrounded monomictic flint aggregate up to 10mm. Occasional voids up to 5mm. 04/02 (0.40) 0.40 6.71 (0.50)MADE GROUND: Concrete; Grey brown fine to coarse sand matrix with 60 - 70% fine to medium, subangular to subrounded monomictic flint aggregate up to 25mm. Frequent voids up to 4mm. 0.90 6.21 MADE GROUND: Concrete; Light grey brown medium to coarse sand matrix with 70-75% fine to coarse, angular to rounded flint aggregate up to 50mm with occasional mixed lithology. Occasional voids up to 10mm. At 0.90m: Irregular, rough, subhorizontal fracture, possibly void. From 1.95 to 2.05m: Recovered as subangular flint cobbles. (1.40)04/02 4.81 2.30 End of Borehole

Remarks 1 (See notes 2 & keysheets) 2

Concrete core C9 was done vertically through foundation footings between trial pit OP2 and the wall. Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out. Concrete core C9 was extended by window sample WS2.
On completion the core hole was reinstated with concrete.

Groundwater was not apparent during drilling.

Scale 1:50

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No. WAL050194

Figure No.

C9 (1 of 1)

BOREHOLE No. C10 107mm to 3.90m Equipment Diamond Drill Rig Drill Fluid Ground Level 7.05 m OD Orientation (°) 0 Compiled by Checked by Logged by Location Floor Slab - Walbrook House Dates Drilled Start 04/02/2006 11 OV End 04/02/2006 03/03/2006 10/03/2006 Water SPT Blows /N Sample/Core Recovery Depth Depth (m) Date Casing Type No. (Thick-Level Legend & Depth Depth (m) Description of Strata (Flush Return) % Core Size (mm) ness) Time (m) TCR SCR RQD From Τo (m) 04/02 (0.05) 0.05 (0.04) MADE GROUND: Vinyl flooring over render with many voids. 7.00 MADE GROUND: Concrete; Light grey fine to medium sand matrix with 60 - 70% well sorted medium monomictic flint aggregate up to 10mm. Occasional voids up to 10mm. 1 no. smooth regular joint perpendicular to surface. 6.96 0.09 MADE GROUND: Concrete; Light grey brown poorly sorted fine to medium sand matrix with 65 - 75% poorly sorted subangular to subrounded monomictic flint aggregate up to 25mm occasionally 40mm. Occasional voids less than 5mm. 3 no. smooth regular joints parallel to surface at 0.32m, 0.73m and 3.34m. (3.61)04/02 3.70 3.35 End of Borehole Remarks Prior to excavation a Cable Avoidance Tool (CAI) survey was carried out. Concrete core C10 was continued by window sample WS3.
On completion the core hole was reinstated with concrete. (See notes & keysheets) 2 Groundwater was not apparent during boring. Scale 1:50 Contract No. WAL050194 WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Figure No. C10 (1 of 1)

304/03

Borehole Diameter

Casing Diameter

Drilling Method Rotary Cored

107mm to 1.50m Equipment Diamond Drill Rig Drill Fluid Ground Level 5.25 m OD Orientation (°) 0 Logged by Compiled by Checked by Location Dates Drilled Start 20/01/2006 KD Floor Slab - St Swithin's House WUL 20/01/2006 03/03/2006 End 02/03/2006 Water Sample/Core Recovery SPT Blows /N Depth (m) Casing Date Type No. (Thick-Level Legend & Depth Depth (m) Description of Strata (Flush Return) % Core Size (mm) ness) Time (m) TCR RQD % SCR From To (m) MADE GROUND: Concrete; Light grey coarse sand matrix with 50 - 60% fine, subangular to subrounded, monomictic flint aggregate up to 5mm. Rare voids up to 2mm. 20/01 (0.07) 0.07 (0.39) 5.18 0.46 4.79 MADE GROUND: Concrete; Light grey brown fine to coarse sandy matrix with 70 - 75% fine to coarse, angular to subrounded monomictic flint aggregate up to 30mm. Occasional voids up to 15mm. At 0.22m: Rare 5mm rebar. From 0.35 to 0.38m: Black (bituminous) fine matrix with 65 - 70% coarse sand to fine gravel size light grey aggregate up to 3mm. (1.04)20/01 1.50 3.75 CORE LOSS (No information) End of Borehole Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out. Remarks (See notes & keysheets) 2 3 Concrete core C11 was extended by window sample WS1. Concrete core lost between 0.46m and 1.50m. On completion the core hole was reinstated with concrete.

Borehole Diameter

Casing Diameter

BOREHOLE No.

C11

5 Groundwater was not apparent during drilling.

Scale 1:50

Drilling Method Rotary Cored

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Contract No.

WAL050194

Figure No.

C11 (1 of 1)

Drilling Method Rotary Cored Borehole Diameter Casing Diameter **BOREHOLE No.** C12 107mm to 1.50m Equipment Diamond Drill Rig Drill Fluid Orientation (°) 0 Dates Drilled Start Ground Level 5.25 m OD

Logged by

Date Shilled Start 14/02/2006 Start 14/02/2006	ouse	
MADE GROUND: Concrete (1.50	Level	Lege
14/02		KXXX
)	
	3.75	
	:	

Remarks 1 (See notes & keysheets) 2 3

Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out. Concrete core C12 continued by window sample WS1A.
On completion the core hole was reinstated with concrete.
Groundwater was not apparent during drilling.

Scale 1:50

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No.

WAL050194

Figure No.

C12 (1 of 1)

Drilling Method Rotary Cored Borehole Diameter **Casing Diameter** BOREHOLE No. C13 107mm to 1.30m Equipment Diamond Drill Rig **Drill Fluid** Ground Level 6.69 m OD Orientation (°) 0 Logged by Compiled by Checked by Location Start 18/02/2006 End 18/02/2006 Dates Drilled Floor Slab - St Swithin's House W 18/02/2006 10/03/2006 SPT Blows /N Water Sample/Core Recovery Depth (m) Date Casing Depth No. Туре Level Legend (Thick-& Depth Depth (m) Description of Strata (Flush Core Size (mm) ness) Time (m) TCR % SCR % Return) RQD From (m) MADE GROUND: Concrete; Light grey coarse sand matrix with 50 - 60% fine to medium, angular to subangular monomictic flint aggregate up to 5mm. Occasional voids up to 5mm. 18/02 (0.70)0.70 5.99 MADE GROUND: Concrete; Light grey brown fine to coarse sand matrix with 65 - 75% fine to coarse, angular to subrounded monomictic flint aggregate up to 35mm. Occasional voids up to 7mm. From 0.90 to 0.93m: Black (bituminous) fine matrix with 65 - 70% coarse sand to fine gravel size light grey aggregate up to 3mm. (0.60)18/02 5.39 1.30 End of Borehole

Remarks (See notes & keysheets) 2

Scale 1:50

Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out. Concrete core C13 was continued by window sample WS7.

On completion the core hole was reinstated with concrete. Groundwater was not apparent during drilling.

UGRO

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No.

WAL050194

Figure No.

C13 (1 of 1)

Drilling Method Rotary Cored Borehole Diameter **Casing Diameter** BOREHOLE No. C14 107mm to 1.87m Equipment Diamond Drill Rig 50mm to 2.07m Drill Fluid Ground Level 8.04 m OD Orientation (°) 0 Compiled by Logged by Checked by Location **Dates Drilled** Start 02/02/2006 kd Floor Slab - Granite House VO/ 02/02/2006 03/02/2006 02/03/2006 End Water Sample/Core Recovery SPT Blows /N Depth Depth Date Casing (m) Type No. Level (Thick-Legend & Depth Depth (m) **Description of Strata** (Flush Core Size nessì RQD Time (m) TCR SCR Return) From Τо % (m) MADE GROUND: Concrete; Grey fine to medium sand matrix with 70 - 75% moderately well sorted fine, angular dark grey to black, occasional brown aggregate up to 10mm. 02/02 (0.03) 0.03 8.01 MADE GROUND: Concrete; Light brown medium to coarse sand matrix with 60% poorly sorted, fine to coarse, angular to subrounded monomictic flint aggregate up to 25mm.

From 0.24 to 0.36m: Fine to medium sand matrix, locally up to 80% fine to coarse, occasionally pebble sized flint aggregate with 30% voids up to 25mm. Localised iron staining at 0.24m.

At 0.63m: Subhorizontal rough fracture (Possibly drilling induced).

At 0.86m: Subhorizontal rough fracture (Possibly drilling induced).

Below 0.87m: With occasional subangular pebble sized flint aggregate up to 100mm.

At 1.14m: Subhorizontal rough fracture (Possibly drilling induced).

At 1.60m: Subhorizontal rough fracture (Possibly drilling induced).

At 1.60m: Subhorizontal rough fracture (Possibly drilling induced).

At 1.07m: Subhorizontal rough fracture (Possibly drilling induced). -(1.84)02/02 1.87-2.07 5 D 1.87 6.17 (0.20) 5.97 (Possibly drilling induced). MADE GROUND: Dark brown silty sand and gravel. Gravel is subangular fine to medium of flint and brick with occasional charcoal and wood fragments. End of Borehole

Remarks (See notes & keysheets) 2

Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out.

Concrete core C14 was carried out instead of trial pit OP5.
After coring, a hand auger was inserted into the hole in order to obtain a 200mm soil sample below the base of the concrete.

Groundwater was not apparent during boring.

Scale 1:50

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No.

WAL050194

Figure No.

C14 (1 of 1)

Drilling Method Rotary Cored Borehole Diameter Casing Diameter BOREHOLE No. C15 50mm to 3.40m Equipment Diamond Drill Rig Drill Fluid Ground Level 8.00 m OD Orientation (°) 0

	entation (°) 0 es Drilled Start 31/01/2006 End 31/01/2006			Log	ged by	kd	piled by 3/1906		ked by	Ground Level Location Floor Core -	Granite		m OD		
Date & Time	Casing Depth (m)	Water Depth (m) (Flush Retum) %	Sai Depth From	Туре		SPT Blows /N Core Size (mm)	:			Description	of Strata		Depth (Thick- ness)	Level	Legen
31/01		72						MADE (GROUND:	Concrete	(core not reta	ined)	(m)	,	
													(3,40)		
31/01			-			:		-	- · - · · · · · ·	End of Bo	orehole		3.40	4.60	
			-												
													; ; ; ; ; ; ; ; ; ; ;		
								And the second s							

Remarks 1 (See notes 2 & keysheets) 3

Core hole replaced trial pit AP3.
Prior to boring a Cable Avoidance Tool (CAT) survey was carried out.
Core hole reinstated with concrete on completion.
Groundwater was not apparent during drilling.

Scale 1:50

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No.

WAL050194

Figure No.

C15 (1 of 1)

Drilling Method Rotary Cored Borehole Diameter Casing Diameter **BOREHOLE No.** C20 107mm to 0.64m Equipment Diamond Drill Rig Drill Fluid Ground Level 12.42 m OD Orientation (°) 0 Logged by Compiled by Checked by Location Wall Core - St Swithin's House Dates Drilled Start 22/02/2006 kď NOI 02/03/2006 14/03/2006 End 22/02/2006 Water SPT Blows /N Sample/Core Recovery Depth (m) Depth Date Casing No. Type Level (Thick-|Legend| & Depth Depth (m) Description of Strata (Flush ness) Time TCR % RQD % (m) SCR Return) From То % (m)(0.27) 0.27 (0.02) 0.29 (0.03) 0.32 (0.32) - 0.64 MADE GROUND: Fine sand render with painted surface over red bricks and mortar. From 0.23 to 0.27m: Sand and fine gravel 22/02 22/02 mortar. MADE GROUND: Light grey fine grained fired tile with jointed glazed surface (<1mm). MADE GROUND: Spongy fibrous material (probably expansion gap) MADE GROUND: Concrete; Light brown grey poorly sorted fine to medium sand matrix with 60 - 65% moderately well sorted, subangular to rounded monomictic flint aggregate up to 25mm. Occasional voids up to 4mm, rare voids up to 8mm.
At 0.39m: Horizontal 12mm rebar.
At 0.54m: Vertical 12mm rebar.
At 0.64m: Plaster with painted surface. End of Borehole

Remarks 1 (See notes 2 & keysheets) 3

Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out.

On completion the core hole was reinstated with concrete.

Groundwater was not apparent during drilling.

Scale 1:50

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Contract No.

WAL050194

Figure No.

C20 (1 of 1)

Equipment Diamond Drill Rig							Bor 10	enose D 7mm to	o 0.32m	Casi	ng Diameter	BOREHOLE	No.		C21	
- '		Diamo	nd Dril	l Rig											•	
Drill Fl Orient	luid ation (°)	0					100	ged by	Com	piled by	Checked by	Ground Level		7.73	m OD	
Dates	Drilled	Start End	22/02/ 22/02/	2006			PB	1984 by 103/200	kd		MON	Wall Core - St	Swithin'	s Hous	e	
_		Water		ZUU6 mple/Co	re Rec	overv	1 02/		14/0	3/2006	ושע	<u> </u>	Τ_	T		
Date &	Casing Depth	Depth (m)	Depth		Type			SPT Blows /N			Doing-!4!	of Court	(7	epth hick-	Level	Legend
Time		(Flush Retum) %		To	TCR %	SCR %	RQD %	Core Size (mm)			Description	o o strata		iess)		
22/02 22/02		70	. 10111	.,,	"	~_	70	(1)(1)		MADE G	ROUND: Pink and	light grev fine		(m) 0.25)		XXXXX
22/02			<u> </u>					ŀ		render surfac	with many void e (<4mm).	light grey fine s and painted	<i>i</i>)	0.25) 0.25 0.02) 0.27 0.05) 0.32		
			-							At 0.0	05m: 10mm rebar. 0.16 to 0.18m: 0	ccasional 10 and		0.27		
ĺ			Ė							\20mm r	ebar.	- To and	///:`	0.32		
			-							MADE G	ROUND: Black bi	tuminous materia and aggregate.	-			
			-							! 1			// F			
			-							fine t		k a n d light grey ortar	[-			İ
Ì			[End of B	orehole	Ė			
}			-										-			
			-										Ę			
			Ē										F			
			<u> </u>										ļ.	ĺ		
													F	1		
			Ė										F			
			-										ŧ			
			Ē										ŀ			
			-										F			
			[E			
			<u>-</u>					ŀ					-			
			-										Ŀ			
										ŀ			ļ			
			-					}					Ę			
			-										F			
			-										E			
			-							ĺ			E			
			-										-			ļ
			-										E			
			Ļ										-	1		
			-										[
			-										F			
			-										· þ			}
İ													F			
!													ŧ			
													F			
			<u> </u>										ŧ			
		,	-										F			
			- -										ŧ			
			-										F			
			<u>-</u>										Ę	Ī		
Remar	ks 1	Drice	to over	vati	2.5	bl a	1345	lones. T	anl 401	7)				:		
Remar (See not & keysh	es 2	Un com	pletion	the c	ore h	iole v	vas r	einsta	ted wit	T) surve h concre	y was carried o	ut.				
	3	around	water wa	as not	appa	irent	auri	ng dri	uing.							
Scale 1:5	50															
	·	-Fi.	6 R O				Pre	oject			<u> </u>	Contrac	t No.	WALO	 050194	

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Figure No.

C21 (1 of 1)

Drilling Method Rotary Cored Borehole Diameter **Casing Diameter** BOREHOLE No. C22 107mm to 1.40m Equipment Diamond Drill Rig Drill Fluid Ground Level 12.41 m OD Orientation (°) 0 Logged by Compiled by Checked by Location Start 22/02/2006 22/02/2006 Dates Drilled Wall Core - St Swithin's House 01 End 02/03/2006 14/03/2006 SPT Blows /N Water Sample/Core Recovery Depth (m) Date Casing Depth Туре No. (Thick-Level Legend & Depth Depth (m) **Description of Strata** (Flush Core Size (mm) ness) Time (m) TCR % SCR Return) RQD From Τо (m) 22/02 MADE GROUND: Fine to coarse sand render with painted surface over red bricks with mortar. Occasional voids up to 10mm. (0.25) 0.25 (0.45)VOID At 0.46m: 18mm plyboard. 0.70 (0.24) 0.94 (0.03) 0.97 (0.43) 1.40 MADE GROUND: Red bricks with mortar. 22/02 MADE GROUND: Fine grained fired tile with jointed glazed surface. MADE GROUND: Concrete; Light grey poorly sorted fine to medium sand matrix with 70 - 75% poorly sorted, angular to subrounded, monomictic flint aggregate up to 0.25mm. Rare voids up to 4mm. At 0.97m: Spongy fibrous material (possibly expansion gap). At 1.12m: Horizontal 24mm rebar. At 1.40m: Plaster with painted surface. End of Borehole Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out. On completion the core hole was reinstated with concrete.

Remarks (See notes 2 & keysheets) 3

Groundwater was not apparent during drilling.

Scale 1:50

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No.

WAL050194

Figure No.

C22 (1 of 1)

Drilling Method Rotary Cored Borehole Diameter **Casing Diameter** BOREHOLE No. C23 107mm to 0.20m Equipment Diamond Drill Rig Drill Fluid Ground Level 12.43 m OD Orientation (°) 0 Logged by PB Compiled by Checked by Location 21/02/2006 21/02/2006 Dates Drilled Start Wall Core - St Swithin's House MON End 02/03/2006 14/03/2006 SPT Blows /N Water Sample/Core Recovery Casing Depth (m) Date Depth No. Type Level æ (Thick-Legend Depth Depth (m) Description of Strata (Flush Core Size (mm) ness) Time (m) TCR % SCR % RQD % Return From (m) 21/02 21/02 (0.18) 0.18 (0.02) 0.20 MADE GROUND: Render with painted surface over red bricks with sand mortar, occasional voids at base. MADE GROUND: Bitumen paper or felt with plastic sheet over brown spongy, fibrous material (Possible expansion gap). Below 0.20m: Concrete (not recovered). End of Borehole Remarks Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out. On completion the core hole was reinstated with concrete. (See notes & keysheets) 2 Groundwater was not apparent during drilling. Scale 1:50 Project Contract No. WAL050194 WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Figure No.

202/02

C23 (1 of 1)

Drilling Method Rotary Cored **Borehole Diameter Casing Diameter** BOREHOLE No. C24 107mm to 0.43m Equipment Diamond Drill Rig Drill Fluid Ground Level 8.35 m OD Orientation (°) 0 Logged by Compiled by Checked by Location Wall Core - St Swithin's House 21/02/2006 21/02/2006 Dates Drilled Start rer 02/03/2006 End 14/03/2006 Water SPT Blows /N Sample/Core Recovery Depth (m) Date Casing Depth No. Type (Thick-Level & Legend Depth Depth (m) (Flush Return) % Description of Strata Core Size (mm) ness) Time (m) TCR SCR % RQD From To % % (m) 21/02 MADE GROUND: White plaster with painted surface and coarse sand, fine gravel render over red bricks and mortar with voids up to 20mm. (0.26) 0.26 (0.02) 0.28 (0.15) 0.43 21/02 MADE GROUND: Brown spongy fibrous material (possibly expansion gap) MADE GROUND: Concrete; Light grey poorly sorted fine to medium sand matrix with 60 - 65% poorly sorted, subangular to subrounded monomictic flint aggregate up to 25mm. Rare voids up to 4mm. End of Borehole Remarks 1 Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out. [See notes & keysheets] 2 On completion the core hole was reinstated with concrete. Groundwater was not apparent during drilling. Scale 1:50

UGRO

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Contract No.

WAL050194

Figure No.

re No. C24 (1 of 1)

Drilling Method Rotary Cored Borehole Diameter Casing Diameter BOREHOLE No. C25 107mm to 0.47m Equipment Diamond Drill Rig Drill Fluid Ground Level 9.81 m OD Orientation (°) 0 Logged by Compiled by Checked by Location Dates Drilled 21/02/2006 Start Wall Core - St Swithin's House YUL 21/02/2006 02/03/2006 14/03/2006 End Water Sample/Core Recovery SPT Depth (m) Casing Date Blows /N No. Type Level Legend (Thick-& Depth Depth (m) **Description of Strata** Core Size (mm) (Flush ness) SCR % Time (m) RQD % Return) TCR From (m) MADE GROUND: White plaster with painted surface and coarse sand, fine gravel render over red bricks and mortar with voids up to 10mm. 21/02 (0.26) 0.26 (0.21) 0.47 21/02 MADE GROUND: Concrete; Light grey poorly sorted, fine to medium sand matrix with 60% poorly sorted, angular to subangular, monomictic flint aggregate up to 25mm.
Rare voids up to 4mm.
From 0.26 to 0.34m: Cavity - Partial core recovery. End of Borehole Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out. On completion the core hole was reinstated with concrete. Remarks (See notes 2 & keysheets) 3 Groundwater was not apparent during drilling. Scale 1:50 Contract No.

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

WAL050194

Figure No.

C25 (1 of 1)

Drilling Method Window Sampler Borehole Diameter 50mm to 2.50m **Casing Diameter** BOREHOLE No. **WS1** Equipment Window Sampler Ground Level 5.25 m OD Logged by Compiled by Chegked by Location 18/02/2006 18/02/2006 kd 02/03/2006 **Dates Drilled** Start KD 18/02/2006 St Swithin's House End Run Time (secs) Depth Sample/Test Details Date Run Level (Thick-Legend Depth **Description of Strata** (Recov Depth (m) ness) Time (m)Type No. Results ery) (%) From To (m) MADE GROUND: Concrete (see concrete core C11). 18/02 0.00 (1.50)Core 1.50 Firm to stiff becoming stiff locally extremely closely fissured brown mottled blue grey slightly sandy CLAY with rare gravel. Gravel is subangular to subrounded fine of flint. 1.50 (1.00) (100)2.20-2.50 PP 2.5/2.0/2.5 18/02 2.50 2,50 End of Borehole Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out.
Concrete was penetrated using concrete coring (described in log C11) then extended by window sampling.
In order to ensure the window sample was not on foundations, the hole was moved approximately 1.00m and rebored as WS1A to check the thickness of the concrete slab.
A Pocket Penetrometer test (PP) was carried out at 2.20m. Values of equivalent undrained shear strength given in kPa (to nearest 5kPa), derived by multiplying UCS readings (in kg/cm2) by 49.
On completion the window sample borehole was backfilled with materials arising and reinstated.
Groundwater was not apparent during boring. Remarks 1 (See notes & keysheets) 2 Scale 1:25 Contract No. WAL050194 WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Figure No. WS1 (1 of 1) 307/03

Drilling	Drilling Method Window Sampler					Borehole Dian 50mm to 2.	neter Casing Diameter	BOREHOLE No.		WS1	A
Equipr	nent	Windo	w Sampler) John 10 E.	-				_
Dates	Drilled	Start End	18/02/2006 18/02/2006			KD	Compiled by Checked by	Ground Level .ocation St Swithin's House	5.25	m OD	
Date & Time	Run Depth (m)	Run Time (secs)	San Depth (m)	nple/T	ŧ .		Description of 9	Strata	Depth (Thick- ness)	Level	Legend
		ery) (%)	From To	1 ype	No.	Results			(m)		
18/02	0.00	Core					MADE GROUND. Concrete (see	e concrete core	(1.50)		
	1.20	_	<u>-</u>								
			- -				Firm to stiff becoming stir	ff locally	1.50	3.75	
		(100)					Firm to stiff becoming stirextremely closely fissured blue grey slightly sandy Cl gravel. Gravel is subangutine of flint.	brown mottled AY with rare ular to subrounded	(0.70)		
18/02	2.20								2 20	7.05	
							End of Boreho	ole	2.20	3.05	
Remar (See not & keysh	eets)2 3 4	In orda WS1A to On com	te was penetra or to ensure to o check the th oletion the wi	itedii the wi lickne indow	usıng indow ess of samol	concrete cori sample was no f the concrete Le borehole wa	as backfilled with meterials a	n extended by window ed approximately 1.0	Om and r	ng. rebored	as
	•	Ground	vater was not	appar	ent c	during boring.	nicii illacci (ats a	sing and reinstate	u.		
Scale 1:2	5	Fu	GRO	.		Minerv	DOK, LONDON - SITE INVESTIGATI	Contract No.	WALC	050194	
						Ove Ar	rup & Partners Limited	Figure No.			

Figure No.

WS1A (1 of 1)

Drilling Method Window Sampler Borehole Diameter **Casing Diameter** BOREHOLE No. WS2 50mm to 4.20m Equipment Window Sampler Ground Level 7.11 m OD Logged by Compiled by Checked by Location Dates Drilled 18/02/2006 18/02/2006 Start Walbrook House 110 L 18/02/2006 02/03/2006 End Run Time (secs) Depth Sample/Test Details Date Run (Thick-Level Legend & Depth Description of Strata (Recov Depth (m) ness Time (m) Type No. Results From Τo (m) MADE GROUND. 18/02 0.00 Concrete (see concrete core Core (2.30)2.30 2,30 2.30 D 1 Soft brown sandy SILT. Sand is fine and medium. (0.30)2.60 Brown slightly silty SAND and GRAVEL. Gravel is subangular to subrounded fine to coarse of flint. From 2.90m to 3.00m: band of grey brown silty SAND. (100) (0.50) 3.10 Brown slightly silty, gravelly SAND. Gravel is fine subangular to subrounded fine to medium of flint. 3.20 (0.90)(100)Below 3.80m: gravel becoming fine to coarse. 4.00 (0.20) Firm brown mottled grey blue CLAY. 18/02 4.20 4.20 4,20 2 D End of Borehole Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out.
Concrete was penetrated using concrete coring (described in log C9) then extended by window sampling.
On completion the window sample borehole was backfilled with materials arising and reinstated. Remarks Groundwater was not apparent during boring. Scale 1:25 **Project** Contract No. WAL050194 WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Figure No. WS2 (1 of 1)

207/02

BOREHOLE No. **WS3** 50mm to 4.80m Equipment Window Sampler Ground Level 7.05 m OD Logged by Compiled by Checked by Location Walbrook House **Dates Drilled** 18/02/2006 18/02/2006 KD 18/02/2006 Start 02/03/2006 End Run Time (secs) Depth Date Run Sample/Test Details (Thick-Level Legend Depth Description of Strata (Recov Depth (m) ness) Time (m) Type No. Results From To (m) MADE GROUND. Concrete (see concrete core C10). 18/02 0.00 Core (3.70)3.70 3.35 MADE GROUND. Grey brown sand and gravel. Gravel is subangular to angular fine and medium of flint and ballast. Approximate boundary. 3.70 (0.30)(40)4.00 3.05 Brown slightly sandy GRAVEL. Gravel is angular to subrounded fine to coarse of flint. (0.30) 4.20 4.30 2.75 Firm orange brown mottled blue grey CLAY. (0.25)(100)4.55-4.80 PP 2.8/2.8/3.4 4.55 2.50 Stiff extremely closely fissured dark grey slightly sandy CLAY/SILT. (0.25)18/02 4.80 4.80 2.25 4.80 D 1 End of Borehole Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out.

Concrete was penetrated using concrete coring (described in log C10) then extended by window sampling.

Pocket Penetrometer tests (PP) were carried out at 4.55m. Values of equivalent undrained shear strength given in kPa (to nearest 5kPa), derived by multiplying UCS readings (in kg/cm2) by 49.

On completion the window sample borehole was backfilled with materials arising and reinstated.

Groundwater was not apparent during boring. Remarks 1 Remarks , (See notes & keysheets)2 Scale 1:25 **Project** Contract No. WAL050194 WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Figure No. WS3 (1 of 1) 207/02

Borehole Diameter

Casing Diameter

Drilling Method Window Sampler

Drilling Method Window Sampler Equipment Window Sampler						Borehole Diar 50mm to 3.		ng Diameter	BOREHOLE N	REHOLE No. W		
	nent Drilled	Start	ow Sampler 18/02/2006			Logged by	Compiled by		m OD			
		End	18/02/2006			18/02/2006	02/03/2006	YOU	St Swithin's Hous	:e 		
Date & Time	Run Depth (m)	Time (secs) (Recov- ery) (%)	Sample/Test De Depth (m) Type No.			etails Results	_	Description of	Depth (Thick- ness) (m)	Level	Legend	
18/02		(100)	3.20	D PP	1	2.5/2.0/3.0	Stiff loca brown mott	le brown gravell fine and mediu occasional con d)	y CLAY. Gravel is m predominantly of crete. (Possibly	(1.30)		
Remarks 1 (See notes 2 & keysheets)2 & keysheets)2 A concrete was penetrated using concrete coring (described in log C13) then extended by window sampling. Concrete was penetrated using concrete coring (described in log C13) then extended by window sampling. Pocket Penetrometer tests (PP) were carried out at 2.20m. Values of equivalent undrained shear strength given in kPa (to nearest 5kPa), derived by multiplying UCS readings (in kg/cm2) by 49. On completion the window sample borehole was backfilled with materials arising and reinstated. Groundwater was not apparent during boring.												iven
Scale 1:29	5	-Fu	GRO		-	Project WALBRI Miner	OOK, LONDON -	SITE INVESTIGAT	Contract No	. WALC)50194	
		G V					rup & Partner	s Limited	Figure No.	WS7 (1 c	of 1)	

Method of Excavation Surface Dimensions Hand dug 1.00m x 1.00m							Plan					TRIAL PIT No.			AP1			
Date Excavated Start 03/02/2006											~	0 °	Ground Locatio		Rousea	5.26	mOD	
03/02/2006 10/03/2006 WM												3 C 3 H		liouse				
Depth (m)	Type	-	Samples Depth Type N. (m)				Description of Strata (1								Depth (Thick- ness) (m)	Level	Legend	
1.25		72/68/88 38/34/42	0.60 0.75 0.75 1.00 1.50	D BCK BCK	1 234 567 89	MADE Sand Subr Brown Brown Fring Gine Free Free Free Free Free Free Free Fr	GRisoun sind)	COUND: Coarded is light of the coarded is stirly year and code is a stirly year and code is stirly year.	oran rse, g fine artly si ravel rse of 0.75; ff orandy CL occasi (poss	ge br ravel nd me lty (ftir m: di nge t AY wi onal	rown g is s edium GRAVEL Ubangu nt.	ravelubang of fl (positar fi inuou mott! re fi es of Grour				(0.55) (0.10) (0.65) (0.25) (0.60)	4.71 4.61 4.36	
Remarks 1 (See notes 2 & keysheets) 3 4 5	Conc On c	r to excav rete was r ompletion	he pit were s ration a Cable removed by sti the trial pit s encountered	Avoic tch dr was h	iance illi packf	Tool ng and illed n	(CA bui titi	T) su Irstin	irvey i ng tech	hniqu Hari	es. einne	and	rainet	ated. night.				
Scale 1:25																		
Project						JALBRO	—- ok	ו טאט	 ιαΝ - «		INVES	TIGAT		Contra	ct No.	WAL	.050194	

TUGRO

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Figure No.

AP1 (1 of 1)

Method of Excavation Hand dug TRIAL PIT No. Plan AP2 Surface Dimensions 1.00m x 1.00m Date Excavated Start 20/01/2006 End 20/01/2006 Surface Dimensions Ground Level 11.73 m OD 0 Logged by Compiled by Checked by Location gs 21/02/2006 St Swithin's House 20/01/2006 In-situ Testing Samples Depth (Thick-Description of Strata Depth Level Legend Depth Type ness) Result Type No (m)(m)(m) Plastic floor covering over MADE GROUND. (0.26)0.26 11.47 MADE GROUND. Grey brown, slightly silty, sandy gravel to cobble size brick and concrete fill/rubble, locally well cemented. 0.40 11.33 B CD K MADE GROUND. Brown, silty very sandy gravel with occasional cobbles. Gravel is subangular, fine to coarse of flint, with frequent brick and concrete fragments. (0.45)0.85 10.88 MADE GROUND. Dark brown, silty sand and gravel with occasional cobbles. Gravel is subangular and subrounded, fine to coarse of flint, brick and concrete with rare slate and iron fragments. Cobbles are of brick and 1.00 1.00 1.00 2 8 9 ČD K (0.40) concrete.
At 0.90m; slate fragments (probably tile). 1.25 (0.15) 10.48 1.30 D 3 MADE GROUND. Soft to firm, orange brown, mottled light grey and brown, sandy, slightly gravelly clay. Gravel is subangular, fine of flint. (Possibly 10.33 (0.2ŏ) 1.60 10.13 reworked) (0.20)1.70 D 4 MADE GROUND. 1.80 (0.20) Concrete. (Possibly for 9.93 foundation) Possibly MADE GROUND. Dark grey brown, silty, slightly gravelly sand. Sand is medium and coarse. Gravel is subangular and subrounded, fine predominantly of flint, with rare rounded brick. Rare black staining / charcoal. 2.00 D 5 2.00 9.73 Light orange brown, slightly gravelly, silty SAND/sandy SILT, with rare black staining / charcoal. Sand is fine and medium. Gravel is subangular, fine and medium, occasionally coarse predominantly of flint. End of Trial Pit Remarks .1 The walls of the pit were stable during excavation.

Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out.

Concrete was removed by stitch drilling and bursting techniques.

On completion the trial pit was backfilled with compacted arisings and reinstated.

Groundwater was not apparent during excavation. (See notes & keysheets) 2

Scale 1:25

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No.

WAL050194

Figure No.

AP2 (1 of 1)

Hand dug 2.00m x 2.00m 22/02/2006 22/02/2006 Method of Excavation Plan TRIAL PIT No. AP4 Surface Dimensions **Date Excavated** Start End 0 Ground Level 10.47 m OD Logged by KD Checked by Compiled by Location St Swithin's House

KD <u>22/02/2006</u>		js 19/03/2006	_ 2	1		St Swithin's House	•		
In-s Depth (m)	Type	ing Result	Sam Depth (m)	.	No.	Description of Strata	Depth (Thick- ness) (m)	Level	Legeno
			0.50 0.50 0.50	B CD K	1 2 3	MADE GROUND. Tarmac over concrete with rare 5mm rebar. (Strata I) From 0.30 to 0.35m: Discontinuous band of yellow locally cemented sand and gravel. Gravel is subangular to subrounded fine to coarse. MADE GROUND. Dark brown silty sand and gravel with frequent whole and part bricks, occasional cobble sized concrete fragments and oyster shells. Gravel is subangular to	0.35)	10.12	
			1.30 - 1.50 - 1.50 - 1.60 - 1.60 - 1.60	D B CKCKD	4 890567	and oyster shells. Gravel is subangular to subrounded, fine to coarse predominantly of flint with brick, tile and rare concrete, glass and bone. (Strata II) To 1.20m South Face terminates To 1.50m East Face terminates To 2.40m North Face terminates From 0.35 to 0.85: East Face: Low grade concrete, weakly cemented flint aggregate. (Strata VII) 0.85m to 1.20m South Face: Compacted stone foundation (Strata VIII) 0.90m to 1.50m North and West Faces: Concrete Slab (Strata III) 1.10m to 1.20m North Face: Orange brown sandy slightly gravelly silt with frequent charcoal. Gravel is fine with occasional brick and rare clinker. (Strata IX)	1.40	9.07	
			2.00 2.00 2.00	D CD K	11 12 13	Orange brown silty very sandy GRAVEL. Gravel is subangular to subrounded fine to medium, occasionally coarse flint (Possibly Made Ground). (Strata IV)	1.90 (0.30) 2.20	8.57 8.27	*
			2.40	D	14	Friable brown sandy gravelly SILT with occasional charcoal and rare pockets of yellow silty sand. Gravel is subangular fine and medium predominantly of flint (Possibly Made Ground). (Strata V)	(0.20)	8.07	
			- - - - - - -			Soft to firm friable brown sandy slightly gravelly CLAY with rare charcoal (Possibly Made Ground). (Strata VI) End of Trial Pit	- - - - -		
			- - - - -						
			• • • • •	:					
							-		
		 	<u>-</u>						
· <u> </u>							-		

Remarks (See notes 2 & keysheets) 3

The walls of the pit were stable during excavation.

Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out.

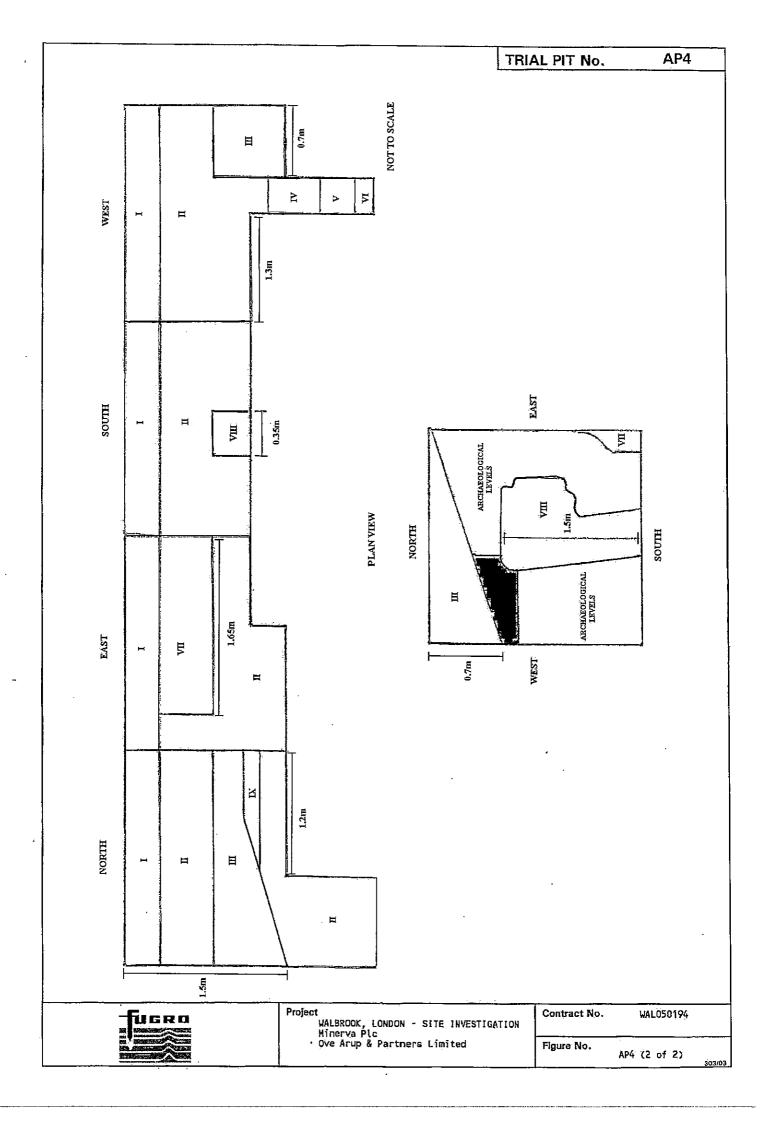
Concrete was removed by stitch drilling and bursting techniques.

On completion the trial pit was backfilled with compacted arisings and reinstated.

Groundwater was not apparent during excavation.

Scale 1:25

Project


WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No.

WAL050194

Figure No.

AP4 (1 of 1)

Method of E Surface Dim Date Excava	ension	s 2.00	Machine Om x 2.00m			Plan						-	TRI	AL PIT	No		AP	5
Logged by KD 01/02/2006			2/2006 2/2006 Checked	l by							~	o '	Locati	d Level on ithin's	House	10.44	m OD	1
	u Test		Sample	es	· · · ·											Depth		_
Depth (m)	Туре	Result	Depth (m)	Туре	No.				De	scrip	tion	of Str	ata			(Thick- пеss) (m)	Level	Legend
			- 0.50 - 0.70	В	3	Clas Clas At 0 MADE sand	.350 w 0. t-do ts : .600	I) .40m, omina are omina are of m: D	occasion local course iscontinuity of the course iscontinuity of the course of the cou	onal ally oncre flir inuou / bro	reba poor ete w nt ag us (i	r. ly ce ith < grega ght s silty	emented 30% ma ite. creed grave	trix. pand.		0.60 0.15)	9.84 9.69	
			0.70 0.70 - 1.00 1.00	CD K CD K	2 3 4 5	MADE Grav coar	GRO S an GRO el	ound wo	andstor glass a good fra Brow ubangul lint wi	ne ar and c agmer wn sa lar a ith c	ind control	oal, (Stra grave ubrou ional	rare conta II) elly clainded, brick	eramic	/	(0.75)	8.94	
			1.60 1.60 - 1.60	D CD K	6 7 8	to r flin	ey (ound t w	grave ded, ith o	. Browelly sa fine in occasional frag	and. to co onal	Gra arse bric	vel i prec k and	k brown s suban lominan l concre a IV)	n, ngular tly of ete and		(0.40)		
			2.00 2.00 2.00	D CD K	9 10 11	MADE ceme	GRO nteo	OUND. d sar lar a	. Orar nd and and sub	nge b grav orour	rown el. ded,	, loc Grav fine	ally we rel is	ell erse of		1.90 - (0.20) - 2.10	8.54 8.34	
			2.30 2.30 2.30 2.30 2.50	D CD K B	12 13 14 15	Ligh grav suba (Pos Belo face	t gi elly ngui sibi w 2.	rey a y SAN lar i ly Ma .10m:	and ora ND. Sa to rour ade Gro Conci	enge, and inded, bund) ete west	hor s me fin (St in n	izont dium, e to rata orth e (St	ally base grave coarse VI) and eat	anded lis flint.	/	(0.30)	8.04	× × × × × × × × × × × × × × × × × × ×
3.00	VN VR	69/80/78 21/24/21	-			flin frag Betw silt grav coar	twinenteen y veel se c	ith of ts. (2.40 ery s is st of fl	avel 18 occasio (Strata Om and sandy oubangul lint. (onal VII 4.00 grave ar a (Stra	e pr char I) Om; el. and s	edomi coal orang Sand ubrou II)		of ick ntly rse, fine to		3.00	7.44	*
			· - - -			grav	eι.	Gra	e brown avel is lint. (s sub	angu	lar.	with fine to	rare		(1.00)		
			- 4.00 - 4.00 - 4.00	B CD K	19 20 21			. ,	End	of T	 rial	Pit	_			4.00	6.44	
			- - - - - - - - - - - - - - - - - - -															
Remarks (See notes & keysheets) 3 4 5 6 7	Shor Pric Cond On c	ring was in or to excav crete was r completion undwater wa	stable on the stalled to a d ation a Cable emoved by stit the trial pit s not apparent heet for sketc	epth Avoic ch dr was b duri	of 4 lance fill ackf	.00m, a Tool a ing and illed w	allo (CAT d bu vith	อฟing () su ursti 1 com	predo rvey w	as c	1116	ed ou	it.		to be	logged.		
	F	UGRO		Pr	oject	JALBROO	—. Ж.	LOND	ON - S	ITE	INVE	STIGA	TION	Contrac	ct No.	WAL	.050194	
					ľ	linerva	ıΡl	l.c	tners				· · · • · · · · · · · · · · · · · · · ·	Figure	No.	AP5 (1	of 2)	· · · · · · · · · · · · · · · · · · ·

TRIAL PIT No. AP5 VII Ħ

WEST

SOUTH

EAST

NORTH

III

₽

Project
WALBROOK, LONDON - SITE INVESTIGATION
Minerva Plc
Ove Arup & Partners Limited

¥

Contract No.

WAL050194

Figure No.

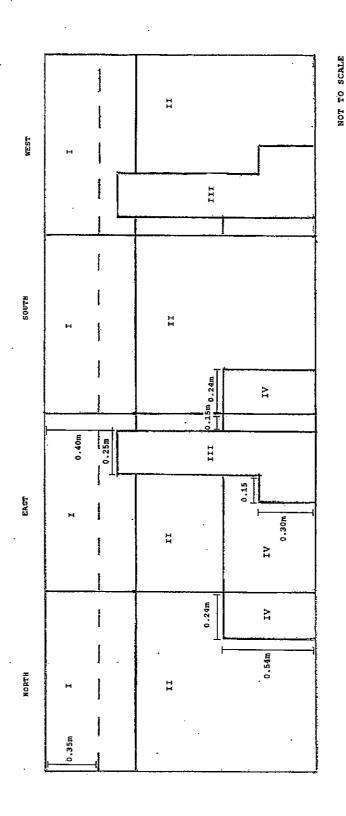
AP5 (2 of 2)

303/0

Method of Excavation Hand dug TRIAL PIT No. Plan AP6 1.00m x 1.00m 17/01/2006 Surface Dimensions Date Excavated Start End 17/01/2006 90 **Ground Level** 8.32 m OD Logged by Compiled by Checked by Location St Swithin's House 17/01/2006 25/01/2006 in-situ Testing Samples Depth (Thick-**Description of Strata** Level Legend Depth Depth ness) Туре Result Type No. (m) (m) (m) MADE GROUND: Plastic flooring over (0.40)0.40 MADE GROUND: Gravel and cobble size fragments of red brick and concrete. With occasional wood fragments, rare bitumen, plastic and electrical cable. Between 0.40m and 0.50m; brick and concrete fill, occasionally cemented, with rare (2mm diameter) steel wire. (0.40)0.80 MADE GROUND: Cobbles. Cobbles are angular of red brick and mortar fragments.
At 1.10m; 1 No electrical socket and plastic surround. (0.40)1.20 End of Trial Pit Remarks 1 The walls of the pit were stable during excavation.

Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out.

Concrete was removed by stitch drilling and bursting techniques.


On completion the trial pit was backfilled with compacted arisings and reinstated.

Groundwater was not apparent during excavation. (See notes 2 & keysheets) 3 Scale 1:25 Project Contract No. WAL050194 WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Figure No. AP6 (1 of 1)

Method of Ex Surface Dime Date Excavate	nsions	1.00	0m x 1.00m			Plan								TRIA	AL PI	T No			AP8	3
Logged by KD	Er C	nd 03/02 ompiled by s	2/2006		. <u>-</u>							- 0		Ground Locatio St Swi	n	House		6 . 95	m OD	
03/02/2006 In-situ		8/03/2006 ng	Sample		-												Dep	th		!
Denth	Туре	Result	Do-th	Туре	No.					Desc	riptio	n of S	tra	ta			(Thick nes (m	ck- s)	Level	Legend
Remarks 1 (See notes 2 & keysheets) 3 4 5	Prio Conc On c	r to excav rete was i ompletion	the pit were st vation a Cable removed by stit water seepage a water seepage a	Avoid ch di was l	dance rilli backf	MADE in the wind was ground and state on a serior of the word of t	errical de la control de la co	n 0.00. n type of the column	05m metric per metric	Darking fartling of the state o	.15m; we will be signed and signe	brown silty ge brid flint crete wn slor round flint are wa consi councie fline dis, sand line are well ravel ravel ravel ravel ravel al Pi ried al Pi	fr gr gr gr gr gr gr gr gr gr gr gr gr gr	tinuoundy sin, and mediatinuoundy sin, and mediatinuound hoccaravel imedium ed blaceth free brown anniunantiunt timber agreed we be of f	ly sand to ron ity. to strain and			60) 05) 60 65 20) .85 .50) .35	6.35 6.30 6.10	
}		JGRO			-	WALBRO Minerv			NDON	- SI	TE IN	VESTI	GAI	TION				WAL	.050194	
						Minerv Ove Ar			artn	ers L	imite	ed .			Figure	No.	AP	B (1	of 1)	

Method of Excavation Hand dug Plan TRIAL PIT No. AP9 1.00m x 1.00m 24/01/2006 24/01/2006 Surface Dimensions Date Excavated Start End 0 **Ground Level** 6.80 m OD Logged by Compiled by Checked by Location gs 23/02/2006 St Swithin's House (1) De 24/01/2006 In-situ Testing Samples Depth (Thick-**Description of Strata** Depth Level Legend Depth ness) Type Result No. Type (m) MADE GROUND. Concrete (Strata I) (0.50)Between 0.35m and 0.38m; dark band of bitumen like material. East and west faces: From 0.40 to 1.35m; Brick foundations running east to west abutting concrete footings (Strata III). 0.50 6.30 MADE GROUND. Brown silty very sandy gravel. Sand is fine to coarse. Gravel is subangular to rounded, fine to coarse of flint, with occasional brick and tile, with rare iron nails (Strata II). North and south faces: From 0.81 to 1.35m; Concrete wall footings running north to south (Strata IV). (0.85)1.00 1.00 1.00 1.00 B CD K W 1234 1.35 5.45 End of Trial Pit Remarks The walls of the pit were stable during excavation. (See notes & keysheets) 2 Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out. Concrete was removed by stitch drilling and bursting techniques. Standing water at 1.09m.
On completion the trial pit was backfilled with compacted arisings and reinstated.
Groundwater was encountered at 1.35m during excavation. See separate sheet for sketches. Scale 1:25 Project Contract No. WAL050194 WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Figure No. AP9 (1 of 2)

TRIAL PIT No. AP9

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No.

WAL050194

Figure No.

AP9 (2 of 2)

Method of Excavation Hand dug 1.00m x 1.00m 09/02/2006 TRIAL PIT No. Plan **AP11** Surface Dimensions Date Excavated Start End 09/02/2006 0 7.99 m OD Ground Level Logged by Compiled by Checked by Location an 07/12/2006 Granite House 1001. 09/02/2006 In-situ Testing Depth (Thick-**Description of Strata** Level Legend Depth Depth Type No. ness) Type Result (m) (m) (m) MADE GROUND. Plastic flooring over thin band of black bitumen over concrete. (Strata (0.32)South Face - 0.00m to 0.22m. (Strata V) 0.32 7.67 MADE GROUND. Brown slightly silty sandy gravelly rubble fill of whole and part red and yellow brick and concrete with frequent red tiles, flint, mortar, wood, charcoal, slate and rare clinker. (Strata II) 1 2 3 ČD K (0.48)South Face - 0.22m to 1.20m; concrete wall footing. (Strata VI) From 0.70 to 0.90m: North Face. Lense of thickly bedded light yellow and red brown silty sand. Sand is fine and medium. (Strata IV) 0.80 Đ 4 0.80 1.00 1.00 1.00 5 6 7 (0.40)ČD 1.20 6.79 Yellow brown slightly silty very sandy GRAVEL with occasional discontinuous bands of light yellow silty fine to medium sand. Gravel is subangular to subrounded fine to coarse of flint. (Strata III) At 0.90m: North Face: Discontinuous band of red brown coarse sandy gravel. Sand is coarse, gravel is angular to subangular fine of flint. End of Trial Pit The pit was unstable during excavation.

Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out.

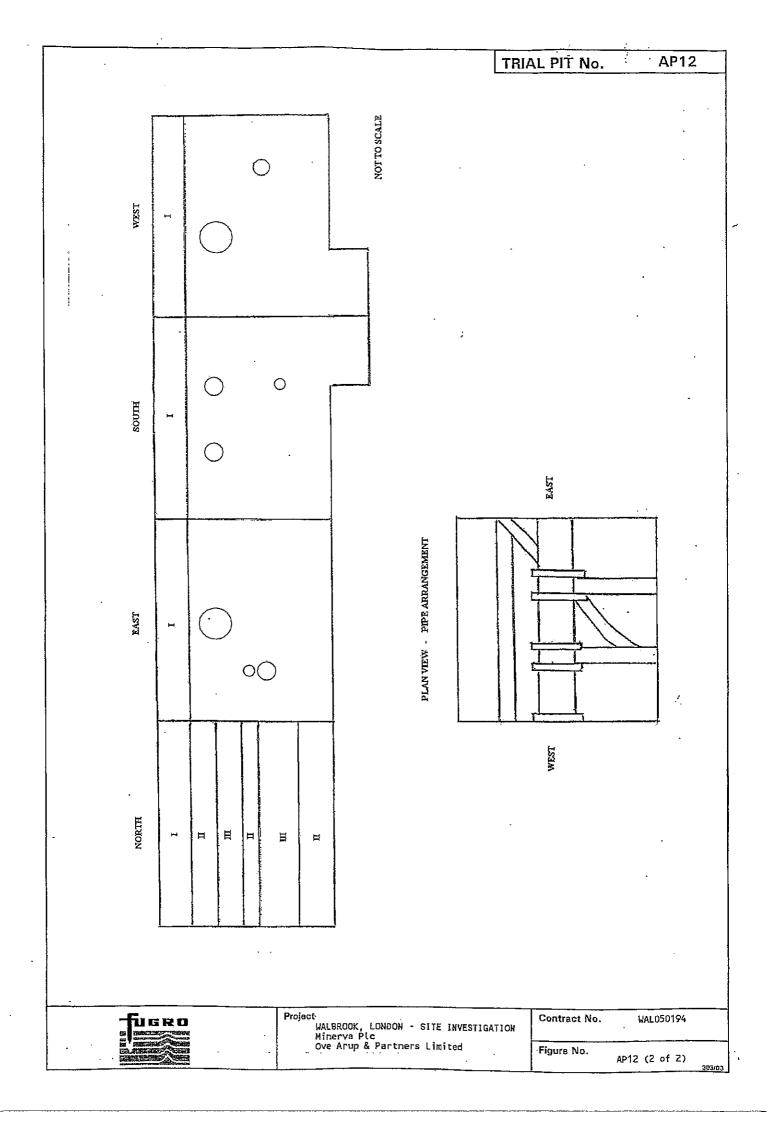
Concrete was removed by stitch drilling and bursting techniques.

On completion the trial pit was backfilled with compacted arisings and reinstated.

Groundwater was not apparent during excavation.

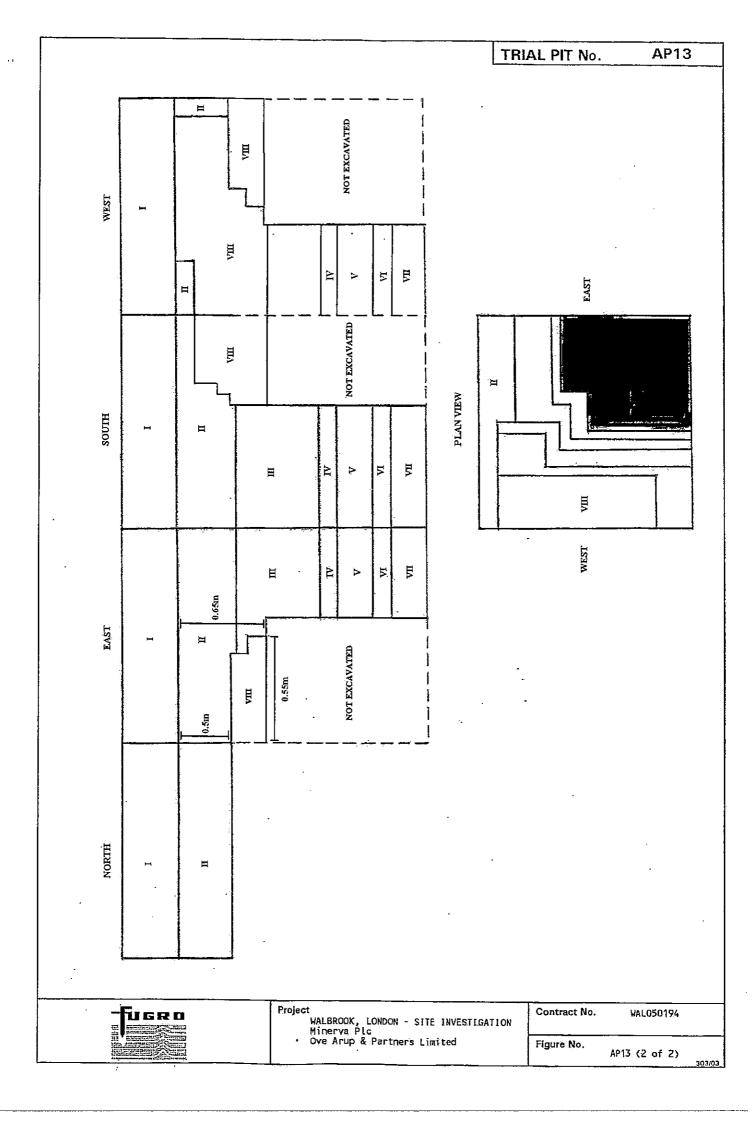
See separate sheet for sketches. Remarks (See notes & keysheets) Scale 1:25 Project Contract No. WAL050194 ucko WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Figure No.

AP11 (1 of 2)


AP11 TRIAL PIT No. Scale: 600mm to 1.0m WEST II ĭ EAST III Project
WALBROOK, LONDON - SITE INVESTIGATION
Minerva Plc
Ove Arup & Partners Limited Contract No. WAL050194 Figure No. AP11 (2 of 2)

Method of Excavation Hand dug Plan TRIAL PIT No. AP12 Surface Dimensions 1.50m x 1.50m Date Excavated Start End 09/03/2006 Λ Ground Level 13.75 m OD Logged by Compiled by Checked by Location Granite House 09/03/2006 10/03/2006 Ke/L In-situ Testing Samples Depth (Thick-**Description of Strata** Level Legend Depth Depth ness) Type Result No. Type (m)MADE GROUND. Tarmac over clast dominated (55-65%) concrete with approximately 10-15% voids. Matrix is light brown medium to coarse sand. Clasts are subangular medium to coarse predominantly of flint and brick aggregate. (Strata I) (0.25)13.50 0.25 MADE GROUND. Brown silty very sandy gravel with frequent whole and part bricks, concrete fragments up to cobble size and terracotta tiles. Gravel is angular to subrounded fine to coarse of flint, brick, concrete and mortar with occasional clinker, charcoal and rare glass, wood and bone fragments. (Strata II)
At 0.40m; 75mm pipe south face, 100mm pipes east and west faces.
From 0.40 to 0.60m; north face. Thin black bitumen layer over clast dominated (65-70%) concrete. Matrix is yellow, medium to coarse grained, poorly sorted sand. Clasts are subangular to subrounded fine to coarse of flint aggregate. (Strata III)
From 0.60m to 0.70m; north face - with reduced brick and concrete. (Strata II)
At 0.70m; 75mm pipes - east and west faces. From 0.70m to 1.00m; north face - Concrete (Strata III).
At 0.75m; 50mm pipe - east face.
At 0.90m; 50mm pipe - south face.
At 1.00m; archaeological levels of ash, bone, tile and stone (not excavated or sampled).
From 1.00m to 1.30m; with occasional chalk -north face. (Strata III) 0.50-1.00 В 1 (1.05)2 3 1.00 CD K 1.30 12.45 End of Trial Pit Remarks The walls of the pit were stable during excavation. (See notes Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out.

Concrete was removed by stitch drilling and burst techniques.


On completion the trial pit was backfilled with compacted arisings and reinstated.

Groundwater was not apparent during excavation. & keysheets) 2 See separate sheet for sketches. Scale 1:25 Project Contract No. WAL050194 WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Figure No. AP12 (1 of 2)

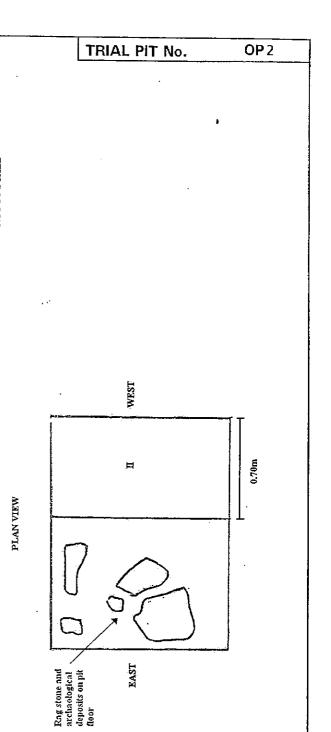
Method of Ex Surface Dime Date Excava	ensions	1.00	n x 1.00m			Plan	TRIAL PIT N	lo.	AP1	3
Logged by	C	nd 16/02 ompiled by	Checke	d by		-> 0 °	Ground Level Location	8.13	m OD	
16/02/2006		s 9/03/2006	VLQ/	2			Granite House			
In-sit Depth (m)	u Testi Type	ng Result	Sampl Depth (m)	es Type	No.	Description of Str	ata	Depth (Thick- ness)	Level	Lege
		<u></u>	, (III)			MADE GROUND. Plastic flooring concrete. (Strata I) At 0.17m; black bitumen waterpr	over	(m) - (0.25)	_	
			0.40	В	1	MADE GROUND. Grey brown, silty gravel with occasional cobbles.	very sandy Gravel is	(0.30)	7 .8 8	
						concrete, mortar and flint with and 1 No terracotta pipe. Cobbl concrete. (Strata II) At 0.25m; discontinuous thin b sand and gravel.	i rare clinker .es are of	0.55	7.58	
			- 0.70 - 0.70 - 0.70	D CD K	234	sand and gravel. Between 0.25m and 0.65m in the south faces and between 0.50m the east face - stepped red brifoundations. (Stata VIII). Bel	west and to 0.65m in	0.35)	7.23	
			- 0.95 1.10	D D	8	foundations. (Stata VIII). Bel 	.ow 0.65m;	//F (0.18)	7.13	XXXX
			1.10	CD K	10 11	MADE GROUND. Grey, mottled bro	own with	(0.15)	6.98	X X X
			1.20 1.20 1.20 - 1.40	D CD K	12 13 14 15	MADE GROUND. Grey, mottled bro occasional black staining, silt gravel, locally with oyster she is subangular and subrounded, to predominantly of flint with rar land pottery fragments. (Strata	y sand and ells. Gravel fine to coarse re charcoal	- (0.10) - 1.25 - (0.15) - 1.40	6.88 6.73	× × ×
			1.40	CD K	16 17	MADE GROUND. Soft to firm, fri grey brown, sandy silt with fre charcoal and rare fine flint gr IIV)				
					·	Possible MADE GROUND. Yellow be mottled red brown (possible including silty gravelly sand. Gravel is fine and medium, occasionally offint. (Strata V)	prown slightly on staining) s subangular.			
						fine and medium, occasionally of flint. (Strata V) Firm light grey mottled brown s with frequent black rootlets ar				
						Iflint gravel. (Strata VI)				
			- - -			Firm, friable, dark grey, mottl grey, slightly sandy, slightly SILI. Gravel is subangular, fi of flint. (Strata VII) End of Trial Pit	ine and medium] [
			<u>-</u> -					- - - -		
			-					-		
			-							
			•							
								<u>E</u>		
Remarks See notes keysheets) 3 4 5 6	Prio Conc On c Grou	r to excaverete was rendered as completion was indicated as constants. The completion of the completio	ation a Cable emoved by sti	Avoid tch di was l t dur	dance rilli backf	ng excavation. Tool (CAT) survey was carried oung and burst techniques. illed with compacted arisings and acceptance.				<u> </u>
cale 1:25		JGRO		Pi	roject		Contract N	Io. WAL	050194	
						WALBROOK, LONDON - SITE INVESTIGA Minerva Plc Ove Arup & Partners Limited	TION Figure No.	· · · · · · · · · · · · · · · · · · ·		

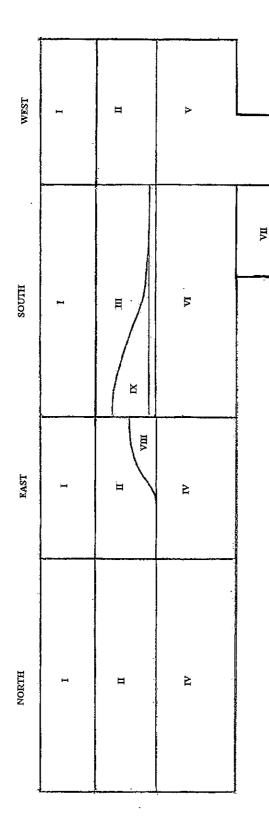
AP13 (1 of 2)

Method of Excavation Hand dug ons 1.00m x 1.60m Start 02/03/2006 Plan TRIAL PIT No. OP₂ Surface Dimensions Date Excavated End 02/03/2006 Λ **Ground Level** 7.11 m OD Logged by Compiled by Checked by Location kes 16/06/2006 Walbrook House 02/03/2006 LOL In-situ Testing Samples Depth (Thick-**Description of Strata** Depth Level Depth Legend Type ness) Result Nο Type (m) (m)MADE GROUND: Concrete (Strata I) MADE GROUND: Low grade, poorly cemented concrete with flint, brick and concrete aggregate. (Strata II)
At 0.40m: discontinuous band of orange sand (0.40)At 0.40m: discontinuous band of orange sand and gravel.
South face - brown clayey sand and gravel.
Gravel is angular to subangular fine to coarse of flint, brick and tile with frequent charcoal and occasional ash lenses.
Locally sandy gravelly clay, becoming more gravelly with depth. (Strata III)
South face: from 0.65 to 0.75 (0.40m to 0.75m in SE corner). Band of black sandy gravelly silt with occasional lenses of orange brown clay. Gravel is subangular to subrounded fine and medium predominantly of flint and red tile with frequent brick and charcoal and rare bone fragments. 1 no. whole brown brick. (Strata IX) 0.40 6.71 0.50 0.50 2 ČD 0.70 3 4 ČD 0.80 6.31 0.90 1.00 7 6 D (0.80)MADE GROUND: Brown with frequent black staining, clayey sand and gravel with rare lenses of orange brown clay and occasional oyster shells. Gravel is subangular fine to coarse of flint, brick, tile, mortar and charcoal. (Strata IV)
Southeast corner: from 0.80 to 1.00m. Orange brown with frequent black staining, sandy silt with rootlets and rare gravel. Gravel is fine of brick and flint. (Strata VIII)
From 0.80m to 1.60m; West Face. Low grade clast dominated (60-65%) concrete with many voids. Matrix is coarse sand. Clasts are subangular of flint aggregate.
Discontinuous void partially filled with orange brown clayey sand and gravel.

(Strata V) 1.50 D 5 1.60 5.51 orange brown clayey sand and gravel.
(Strata V)
From 0.80m to 1.20m; South Face. Silty sandy and gravelly rubble fill of tile, brick, mortar and rag stone with occasional flat yellow paving stones. Gravel is subangular fine to coarse of flint, tile and mixed lithology. (Strata VI)
From 1.20m to 1.60m; South Face Only: Grey silty sand and gravel of flint, brick and mortar with occasional charcoal and red silty fine sand lenses. Occasional rag stone up to 0.3m. (Strata VII) End of Trial Pit Remarks Some pit wall instability. Some pit wall instability.

Prior to excavation a Cable Avoidance Tool (CAT) survey was carried out.


Concrete was removed by stitch drilling and burst techniques
Insufficient material for bulks (B) or second contamination (K) samples due to archaeology.


Samples 1 to 5 taken from south face, samples 6 and 7 from east face.

On completion the trial pit was backfilled with compacted arisings and reinstated.

Groundwater was not apparent during excavation. (See notes & keysheets) 2 Groundwater was not apparent during excavation. See separate sheet for sketches. Scale 1:25 Project Contract No. WAL050194 u Gro WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Figure No. OP2 (1 of 2)

30310

Project

WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited Contract No.

WAL050194

Figure No.

OP2 (2 of 2)

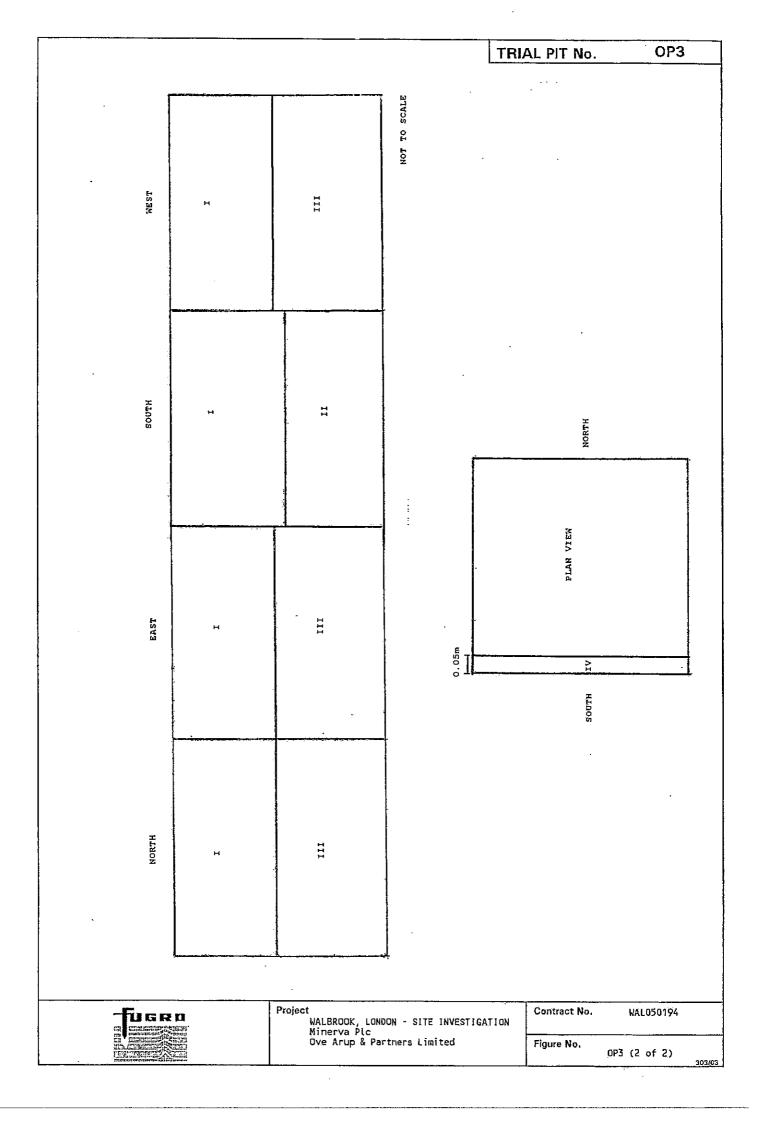
303/03

vietnod of Ex Surface Dime Date Excavat	nsions ed St	i 1.00π tart 06/02/	1 x 1.00m 2006			Plan						TRIAL PIT No		OPS	3
Logged by (D 06/02/2006	C	nd 06/02/ ompiled by n 7/03/2006	Checke	ed by				-	_	~	0 °	Ground Level Location Walbrook House	7.0	6 m OD	
	Testi		Samp		••••			·		· <u> </u>			Depth	Ι	
Donth	Туре	Result	Depth (m)	Туре	No.	<u>-</u> .		<u> </u>		tion o			(Thick- пеss) (m)	Level	Legend
Remarks See notes Se keysheets)	The	pît was uns	- 0.50 0.75 0.75 0.75	D BCD K	1 234	MADE stair and process with (Street occass Grave flint At 0. thick	GROU ning, noart see of occa I aleen of occa I aleen of occa I aleen of occa I aleen of occa I aleen of occa I aleen of occa I aleen oc	Lapse belou	brykssada 5, s. rosa - T	wn wigrave brick of ick. Figure 1 Concertal 1 Concerta	th filks, rucond sclyn a Rae ere te	requent iron ll of whole mortar and , fine to crete, brick ragments. tinuous band sand with clay. medium of e chalk Concrete Slab (>800mm	0.50	6.56	

On completion the trial pit was backfilled with compacted arisings and reinstated. Groundwater was not apparent during excavation. See separate sheet for sketches.

Scale 1:25

Project


WALBROOK, LONDON - SITE INVESTIGATION Minerva Plc Ove Arup & Partners Limited

Contract No.

WAL050194

Figure No.

OP3 (1 of 2)

APPENDIX B Field Test Results

Record of Water Levels in Standpipes and Piezometers

Figures FT1/1 and FT1/2

RECORD OF WATER LEVELS IN STANDPIPES AND PIEZOMETERS

		<u> </u>	Installat	ion Details	
Type Datum Installation Dat	Vibrating win Ground Level te 20/02/2006		Depth 26 Datum Elevation 10 Commissioned by KD		Borehole No BH1 Response Zone 25.50-26.50m Commissioned 20/02/2006
	··			g Details	
Date	Time	Operator	Depth to Water (m below Datum)	Water Level m OD	Remarks and Samples Taken
24/02/2006	15:03	KD	2.50	7.98	Reading (Linear units) = 7362.0
01/03/2006	13:54	KD	3.01	7.47	Reading (Linear units) = 7405.5
Prepared by			Checked by		Approved by

Base (Linear units): 0.0; K Factor: 0.000000

RECORD OF WATER LEVELS IN STANDPIPES AND PIEZOMETERS

	Installation Details /pe 50mm Standpipe Depth 10.00m Borehole No BH3											
Туре	50mm Stand	pipe	Depth 10	.00m	Borehole No	BH3						
Datum	Basement L	evel	Datum Elevation 11	.73m OD	Response Zone	5. 30-1 0.00m						
Installation Dat	e 20/02/2006		Commissioned by KI)	Commissioned	24/02/2006						
			Readir	g Details								
Date	Time	Operator	Depth to Water (m below Datum)	Water Level m OD	Remark	s and Samples Taken						
24/02/2006	14:30	KD	5.40	6.33								
01/03/2006	12:45	KD	5.70	6.03								
į												
·												
	;											
Prepared by		, <u></u>	Checked by		Approved by							

APPENDIX C Geotechnical Laboratory Test Results

Geotechnical Testing Schedules of UKAS Accreditation General Notes on Laboratory Test Results Summary of Classification Tests Particle Size Distribution Curves Summary of Undrained Triaxial Compression Test Results STL Test Reports

2 Pages
Figure LKS/01
Figures LT1/1 to LT1/7
Figures LT2/1 to LT2/59
Figures LT5/1 to LT5/5
FESL/D4771,
FESB/D5223,
FESL/D5393,

FESB/D5553

SCHEDULE OF UKAS ACCREDITED LABORATORY TESTS FOR SOILS FOR CIVIL ENGINEERING PURPOSES

UNITED KINGDOM ACCREDITATION SERVICE TESTING FUGRO LIMITED, WALLINGFORD LABORATORY No 0919 Issue No 014 Issue date 17th November 2005

	Types of Test/Properties Measured Range of Measurement	Standard Specification Equipment/Techniques Used
Physical Tests	Moisture content - oven drying method	BS 1377: Part 2: 1990
	Liquid limit - cone penetrometer	BS 1377: Part 2: 1990
	Liquid limit - cone penetrometer - one point method	BS 1377: Part 2: 1990
	Liquid limit – Casagrande apparatus	BS 1377: Part 2: 1990
	Liquid limit – Casagrande apparatus – one point method	BS 1377: Part 2: 1990
	Plastic limit	BS 1377: Part 2: 1990
	Plasticity index and liquidity index	BS 1377: Part 2: 1990
	Density - linear measurement	BS 1377: Part 2: 1990
	Particle density – small pyknometer	BS 1377: Part 2: 1990
	Particle size distribution - wet sieving	BS 1377: Part 2: 1990
	Particle size distribution - dry sieving	BS 1377: Part 2: 1990
	Particle size distribution - pipette method	BS 1377: Part 2: 1990
	Dry density/moisture content relationship (2.5kg rammer)	BS 1377: Part 4: 1990
	Dry density/moisture content relationship (4.5kg rammer)	BS 1377: Part 4: 1990
	Dry density/moisture content relationship (vibrating hammer)	BS 1377: Part 4: 1990 Documented in-house methods L-T-027 and L-T-028 based on BS 1377: Part 4: 1990
	One-dimensional consolidation properties	BS 1377: Part 5: 1990
	Permeability in a hydraulic consolidation cell	BS 1377: Part 6: 1990
	Permeability in a triaxial cell	BS 1377: Part 6: 1990
·	Accelerated permeability test	Environment Agency R & D Technical Report P1- 398/TR/2

SCHEDULE OF UKAS ACCREDITED LABORATORY TESTS FOR SOILS FOR CIVIL ENGINEERING PURPOSES

UNITED KINGDOM ACCREDITATION SERVICE TESTING FUGRO LIMITED, WALLINGFORD LABORATORY No 0919 issue No 014 Issue date 17th November 2005

	Types of Test/Properties Measured Range of Measurement	Standard Specification Equipment/Techniques Used
Mechanical Tests	Shear strength – small shearbox (loads from 0 to 25 kN)	BS 1377: Part 7: 1990
:	Shear strength – large shearbox (loads from 0 to 48 kN)	BS 1377: Part 7: 1990
	Residual strength – small ring shear apparatus (loads for 0.1 to 25Kn)	BS 1377; Part 7: 1990
	Unconfined compressive strength - load frame method (loads from 0 to 48kN)	BS 1377: Part 7: 1990
	Undrained shear strength - triaxial compression without measurement of pore pressure (loads from 0 to 48kN)	BS 1377: Part 7: 1990
	Undrained shear strength - triaxial compression with multistage loading and without measurement of pore pressure (loads from 0 to 48kN)	BS 1377: Part 7: 1990
	Effective shear strength – consolidated-undrained triaxial compression test with measurement of pore pressure (loads from 0 to 48kN).	BS 1377: Part 8: 1990
	Effective shear strength – consolidated-drained triaxial compression test with measurement of volume change (loads from 0 to 48kN)	BS 1377: Part 8: 1990
	One-dimensional consolidation properties of soils using controlled-strain loading (loads from 0.1 to 25kN)	ASTM D4186-89
	Effective shear strength – (isotropically) consolidated undrained triaxial extension test with measurement of pore pressure (loads from 0.1 to 25kN)	Documented in-house method No L-T -023 based on BS 1377: Part 8: 1990
	Effective shear strength – (isotropically) consolidated undrained multistage triaxial compression test with measurement of pore pressure (loads from 0.1 to 25kN)	Documented in-house method No L-T -023 based on BS 1377; Part 8: 1990
	Effective shear strength – (isotropically) consolidated drained multistage triaxial compression test with measurement of volume change (loads from 0.1 to 25kN)	Documented in-house method No L-T -023 based on BS 1377: Part 8: 1990
	Effective shear strength — (anisotropically) consolidated undrained triaxial extension test with measurement of pore pressure (loads from 0.1 to 25kN)	Documented in-house method No L-T -023 based on BS 1377: Part 8: 1990
·	Effective shear strength – (anisotropically) consolidated undrained triaxial compression test with measurement of pore pressure (loads from 0.1 to 25kN)	Documented in-house method No L-T -023 based on BS 1377: Part 8: 1990
	Effective shear strength – (anisotropically) consolidated drained triaxial compression test with measurement of volume change (loads from 0.1 to 25kN)	Documented in-house method No L-T -023 based on BS 1377: Part 8: 1990

GENERAL NOTES ON LABORATORY TEST RESULTS

1. TEST METHODS

The tests reported on the following sheets have been carried out in accordance with the methods given in BS 1377:1990 'Methods of test for soils for civil engineering purposes', subject to a small number of variances as described below under the respective headings. These notes also serve as keysheets to any notation used in reporting the laboratory tests.

2. KEY TO NOTATION OF SAMPLE TYPE

D: Disturbed sample.

B: Bulk disturbed sample.

U: General purpose open drive tube sample.

P: Piston sample.

TW: Thin wall sample.

RC: Rotary core sample.

3. CLASSIFICATION TESTS

% passing 425 μ m: this figure is only correctly reported when 'WS' is shown in the 'Method of preparation' column. For 'HP' and 'AR', the reported figure is an estimate only.

WS:

sample prepared by Wet Sieving.

HP:

sample prepared by Hand Picking (removal) of gravel sized fragments.

AR:

sample tested As Received.

NP:

non-plastic.

4. COMPACTION RELATED TESTS

Sample preparation:

Individual indicates test carried out on individual sub-samples.

Single indicates test carried out on a single sample.

Assumed values of particle density are reported in brackets e.g. (2.67)

5. SAMPLE DESCRIPTIONS

The sample descriptions shown on the test report sheets are the technician's visual descriptions of the test samples, in accordance with Clause 9.1 of Part 1 of BS 1377:1990 and do not necessarily comply with the requirements of BS 5930:1999 or BS EN ISO 14688-1:2002. For a more comprehensive description of the soil samples to these standards, reference should be made to the exploratory hole records, or an engineering description can be provided on request.

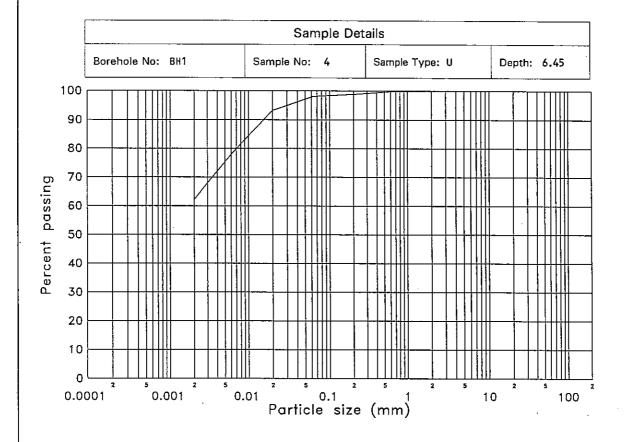
6. INTERPRETATION OF TEST RESULTS

Laboratory test results in this report give the soil properties of individual specimens tested under specified conditions. Individual results or groups of results may not be appropriate for use as design parameters for some geotechnical analyses. The samples may be non-representative, disturbed internally, or prepared and tested under conditions suited for different geotechnical applications. Unless the selection of design parameters is discussed in this report, it is recommended that the advice of an appropriately qualified and experienced specialist is sought.

										Classificatio	n Tests		
Hole	Туре	Depth	Sample No.	Bulk Density (Mg/m³)	Moisture Content (%)	Dry Density (Mg/m³)	Particle Density (Mg/m³)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% passing 425 μm	Method	Description
вн1	U	6.45	4		32			76	30	46	100	AR	Brown/grey slightly sandy CLAY with a litt gypsum
В Н1	U	8.15	8		34			80	30	50	100	AR	Brown slightly sandy CLAY
вн1	U	9.15	11		33			84	28	56	100	AR	Dark grey/brown slightly sandy CLAY
BH1	U	10.15	14		32			82	27	55	100	AR	Dark grey/brown slightly sandy CLAY
вн1	U	11.55	17		31			82	30	52	100	AR	Dark grey/brown slightly sandy CLAY
вн1	U	13.05	20		30			79	32	47	1D0	AR	Dark grey/brown slightly sandy CLAY
вн1	ָ ט ו	14.65	23		34			78	28	50	100	AR	Dark grey slightly sandy CLAY
вн1	u	16.05	26	,	29			80	33	47	100	AR	Dark grey/brown slightly sandy CLAY
вн1	U	17.55	29		3D			83	32	51	100	AR	Grey/brown slightly sandy CLAY
		.		Input by ZS.		Date 2	4/04/2006	Chec Afj	ked by	Da	ite 24/04/20	06	
····	-fug	RO		Project		WALB	ROOK, LONDO	ON - SITE I	INVESTIGATI	ON			Contract No WAL050194
						·							Figure No LT1/ 1

					Classification Tests									
Hole	Туре	Depth	Sample No.	Bulk Density (Mg/m³)	Moisture Content (%)	Dry Density (Mg/m³)	Particle Density (Mg/m³)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% passing 425 µm	Method	Description	
ВН1	ט	19.05	32		27			72	31	41	100	AR	Dark grey/brown slightly sandy CLAY	
ВН1	U	20.65	36		30			80	32	48	100	AR	Dark grey/brown slightly sandy CLAY	
BH1 .	U	22.15	39		27			72	31	41	100	AR	Dark grey/brown slightly sandy CLAY	
внт	U	23.65	42		30			81	34	47	100	AR	Dark grey/brown slightly sandy CLAY	
вн1	U	25.45	45		30			80	31	49	100	AR	Dark grey/brown slightly sandy CLAY	
вн1	U	27.15	48		29			81	28	53	100	AR	Dark grey/brown slightly sandy CLAY	
вн1	U	28.35	51		32			66	29	37	100	AR	Dark grey slightly sandy CLAY	
вн1	u	29.85	54		22			56	25	31	100	AR	Dark grey/brown slightly sandy CLAY	
вн1	u	31.35	57		25			64	24	40	100	AR	Dark grey/brown slightly sandy CLAY	
				Input by ズ.S.	•	Date 24	/04/2006	Check APD	ed by	Dat	te 24/04/200	16		
	fug	RO		Project		WALBE	OOK, LONDO						Contract No WAL050194	
	V	<u></u>										Figure No LT1/ 2 102/03		

		:			· · · · · · · · · · · · · · · · · · ·	,			n Tests				
Hole	Туре	Depth	Sample No.	Bulk Density (Mg/m³)	Moisture Content (%)	Dry Density (Mg/m³)	Particle Density (Mg/m³)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% passing 425 μm	Method	Description
вн1	Ü	32.85	60		26	ĺ		67	26	41	100	AR	Grey slightly sandy CLAY
BH1	U	34.35	63		25			66	26	40	100	AR	Dark grey slightly sandy CLAY
; ВН1	U	35.85	66		33			71	28	43	100	AR	Dark grey slightly sandy CLAY
Вн1	U	37.35	69		38			76	35	41	100	AR	Dark grey CLAY/SILT
вн1	U	38.85	72		28			81	30	51	100	AR	Dark grey slightly sandy CLAY
BH1	U	40.35	75		33			73	30	43	100	AR	Dark grey/brown slightly sandy CLAY
вн1	U	41.85	78		26			80	19	61	100	AR	Dark grey/brown slightly sandy CLAY
вн1	U	43.35	81		21			58	21	37	100	AR	Dark grey slightly sandy CLAY
вн1	U	44.85	84		21			60	22	38	99	[*] НР	Dark grey slightly sandy CLAY
				Input by ス.ち.		Date 24	/04/2006	Check APE	ed by	Da	te 24/04/200)6	
	<u>fu</u>	RD ≈=		Project		WALBR	OOK, LONDO	N - SITE II	NVESTIGATIO	ON			Contract No WAL050194
	<u>V</u>	≋	i										Figure No LT1/ 3 102/03

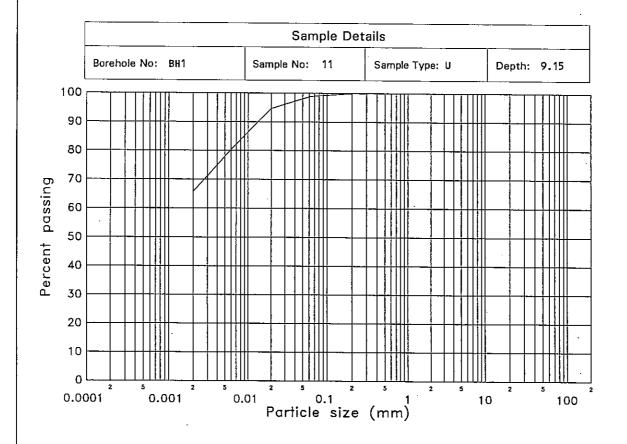

									-	Classification	n Tests		
Hole	Туре	Depth	Sample No.	Bulk Density (Mg/m³)	Moisture Content (%)	Dry Density (Mg/m³)	Particle Density (Mg/m³)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% passing 425 µm	Method	Description
вн1	U	46.35	87		22	i.		58	20	38	100	AR	Dark grey slightly sandy CLAY
вн1	U	47.85	90		25			75	32	43	100	НР	Dark grey/brown slightly sandy CLAY
вн1	U	49.35	93		23			71	31	40	100	AR	Dark grey/brown slightly sandy CLAY
вн1	U	50.85	96		22			61	27	34	100	AR	Dark grey/brown slightly sandy CLAY
						į		;	•				
			·						į			i	
		İ							ļ				
									į			i	
										}	ļ		
_			[Input by ス・S・		Date 24	/04/2006	Check	ed by Subtet	Dat	e 24/04/200	6	
	<u> Tuc</u>	RO		Project	•	WALBR	OOK, LONDO	N - SITE II	NVESTIGATIO)N			Contract No WAL050194
								******			- 17.1		Figure No LT1/ 4 102/03

										Classification	n Tests		
Hole	Туре	Depth	Sample No.	Bulk Density (Mg/m³)	Moisture Content (%)	Dry Density (Mg/m³)	Particle Density (Mg/m³)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% passing 425 µm	Method	Description
вн3	U	10.45	. 7		31			79.	27	52	100	AR	Dark brown slightly sandy CLAY
¹ внз	U	14.15	11		27			79	30	49	100	AR	Dark brown slightly sandy CLAY
внз	U	17.15	14		29			83	33	50	100	AR	Dark brown/grey CLAY
вн3	U	20.15	17		27			77	31	46	100	AR	Dark brown slightly sandy CLAY
вн3	U	23.15	21		27	:		77	28	49	100	AR	Dark brown/grey slightly sandy CLAY
внз	U	26.15	24		27		, ,	81	30	51	100	AR	Dark brown slightly sandy CLAY
внз	U	29.15	27		21			56	23	33	100	AR	Oark brown/grey slightly sandy CLAY
внз	U	32.15	31		30		:	68	29	39	100	AR	Dark brown/grey slightly sandy CLAY
внз	U	35.15	34		25			71	30	41	100	AR	Dark brown/grey slightly sandy CLAY
				Input by		Date		Check	ed by	Dat	e	· <u></u>	
<u> </u>	- Tug	RO		ZS. Project	- 	<u> </u>	00K, LONDO	HHI	buble 0		08/05/200		Contract No WAL050194
							·	··· • • • • • • • • • • • • • • • • • •					Figure No LT1/ 5

										Classificatio	n Tests		
Hole	Туре	Depth	Sample No.	Bulk Density (Mg/m³)	Moisture Content (%)	Dry Density (Mg/m³)	Particle Density (Mg/m³)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% passing 425 µm	Method	Description
внз	U	36.65	37		30			75	28	47	93	HP	Dark brown/grey slightly sandy CLAY with a little gravel
внЗ	U	38.15	40		28			81	29	52	100	AR	Brown CLAY
вн3	U	39.65	43		24			63	22	41	94	HP	Dark brown/grey slightly sandy CLAY with a little gravel
внз	U	41.15	46		25			81	32	49	100	AR	Dark brown slightly sandy CLAY
внз	U	42.65	49		27		i i	55	27	28	100	AR	Dark brown slightly sandy CLAY
внз	u	44-15	52	i	32			80	32	48	100	AR	Brown slightly sandy CLAY
внз	U	45.65	55		20	į		76	21	55	100	AR	Dark brown slightly sandy CLAY
внз	U	47.15	58		23			77	17	60	100	AR	Brown slightly sandy sandy CLAY
вн3	u	48.65	61		21	·		59	23	36	100	AR	Dark brown slightly sandy CLAY
		<u> </u>		nput by		Date 08	3/05/2006	Check	ed by	Dat	te 08/05/200	6	
	<u>fuc</u>	RO	ľ	Project		WALBR	OOK, LONDO		,			<u> </u>	Contract No WAL050194
	V						•						Figure No LT1/6 102/

										Classification	n Tests		
Hole	Туре	Depth	Sample No.	Bulk Density (Mg/m³)	Moisture Content (%)	Dry Density (Mg/m³)	Particle Density (Mg/m³)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% passing 425 µm	Method	Description
вн3	U	50.65	64		17			49	25	24	100	AR	Dark brown and greenish/grey slightly sandy CLAY
	-			·						:			
		·											
						İ						İ	
		·			;			·			į.		
				Input by Z.S.	Į	Date 08	3/05/2006	Check	ed by oublet.	Dan	te 08/05/200	16	
	fug	RD ≋=		Project		WALB	ROOK, LONDO			ON .			Contract No WAL050194
		$\widehat{\sim}$											Figure No LT1/7

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

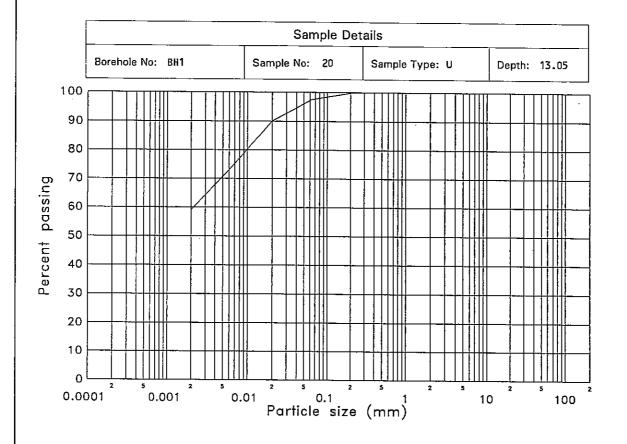


a.v.	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAY		SILT			SAND			GRAVEL		COBBLES

%CLAY	%CLAY %SILT		ND	%GRAVEL	%COBBLES
62	36		2	0	0
Loss on Pretreatme Test Date: Uniformity Coeffic	06/04/200	6	Descripti Brown/gr	on rey slightly sand	/ CLAY

	Input by Z.S.	Date 10/04/2006	Checked by Af Dutte.	Date 21/04/2006.		
Tugro	Project WALBROOK	, LONDON - SI	TE INVESTIGATIO	ON	Contract No	WAL 050194
					Figure No L'	Γ2/1

B.S. 1377: Part 2: 1990: 9:2/9:3/9.4/9:5

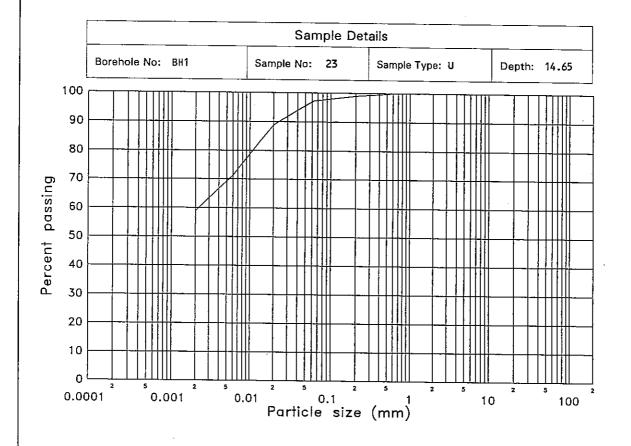


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		
CLAY		SILT		L	SAND			GRAVEL		COBBLES	

%CLAY	%SILT	%:	SAND	%GRAVEL	%COBBLES
66	33	1		0	0
Loss on Pretreatme Test Date: Uniformity Coefficie	11/04/20	06	Descript Dark gr	tion ey slightly sandy	CLAY

	Input by ス.ら.	Date 19/04/2006	Checked by Affable .	Date 21/01/2006.		
Tugro	Project WALBROOK	, LONDON - SI	TE INVESTIGATION		Contract No	WAL050194
	_				Figure No LT2	2/2

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

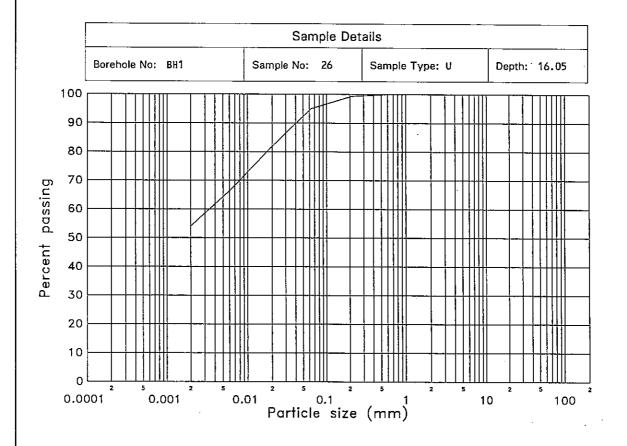


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAY		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%	SAND	%GRAVEL	%COBBLES
59	38		3,	0	0
Loss on Pretreatme Test Date: Uniformity Coefficie	07/04/200	16	Descripti Dark gre	on ey slightly sandy	CLAY

	Input by Z .S.	Date 11/04/2006	Checked by	Date 21/04/2006.			
TUGRO	Project WALBROOK, LONDON - SITE INVESTIGATION				Contract No WAL050194		
V					Figure No	72/3 105/04	

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

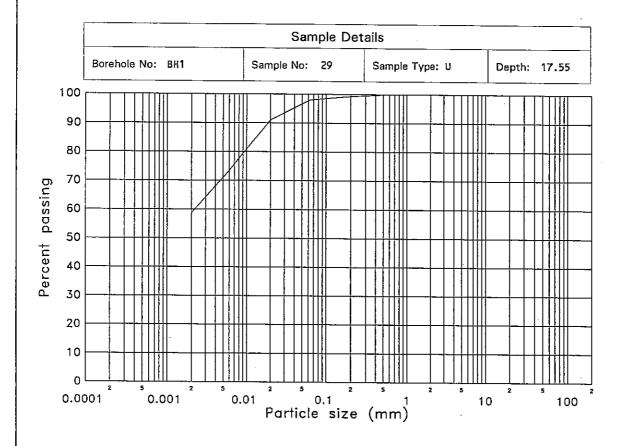


	CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
į			SILT		-	SAND			GRAVEL		COBBLES

%CLAY	%SILT	%SAND	%GRAVEL	%COBBLES			
59	38	3	0	0			
Loss on Pretreatment: Test Date: Uniformity Coefficient	07/04/2006	5 Dark s	Description Dark grey slightly sandy CLAY				

	Input by Z.S.	Date 11/04/2006	Checked by Affords	Date 21/94/2006.			_	<u>.:</u>
Tugro	Project WALBROOK, LONDON - SITE INVESTIGATION				Contract No WAL050194			94
					Figure No	LT2	:/4	105/04

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

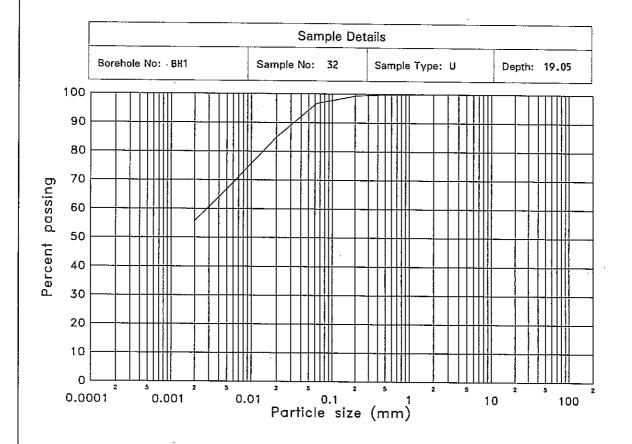


21.17	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAY		SILT			SAND		-	GRAVEL		COBBLES

%CLAY	%SILT	%:	SAND	%GRAVEL	%COBBLES
54	41		5	0	0
Loss on Pretreatme Test Date: Uniformity Coeffici	07/04/20	06	Descript Dark gr	ion ey slightly sandy	CLAY

	Input by ス.S.	Date 11/04/2006	Checked by	Date 21/04/2006	•	
Tugro	Project WALBROOK	(, LONDON - SI	TE INVESTIGATIO	NC	Contract No	WAL050194
V					Figure No LT	2/5

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

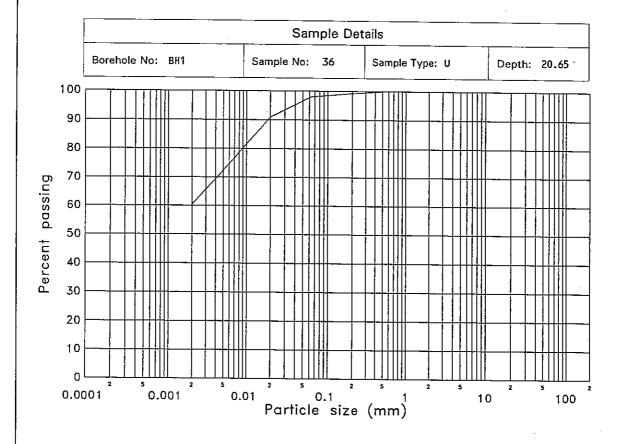


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLA1		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%	SAND	%GRAVEL	%COBBLES
59	39		2	0	0
Loss on Pretreatmen Test Date: Uniformity Coefficie	07/04/20	06	Descripti Grey sli	on ightly sandy CLAY	

	Input by Z.S.	Date 11/04/2006	Checked by AP Doubteb.	Date 21/04/2006.		·	
TUGRO	Project WALBROOK	C, LONDON - SI	TE INVESTIGATIO	DN .	Contract N	o WAL05	0194
▼					Figure No	LT2/6	105/04

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

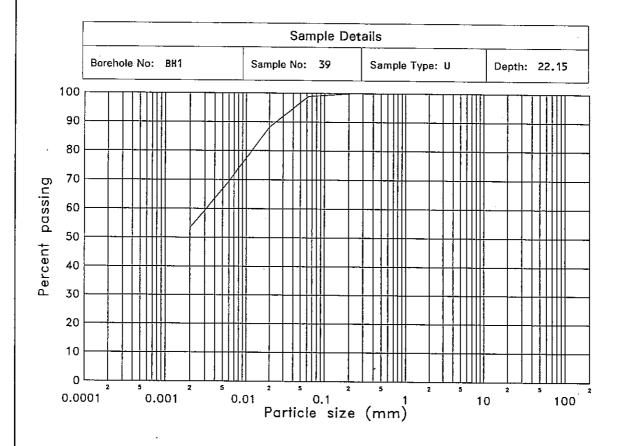


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	WEDIUM	COARSE	
CLAT		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%SAND		%GRAVEL	%COBBLES
56	41		3	0	0
Loss on Pretreatmer Test Date: Uniformity Coefficie	07/04/200	6	Descripti Dark gre	on ey slightly sandy	CLAY

	Input by Z.S .	Date 11/04/2006	Checked by Albouteb.	Date 21/04/2006.		
TUGRO	Project WALBROOK	, LONDON - SI	TE INVESTIGATIO	ON	Contract No	WAL050194
▼					Figure No LT	2/7

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

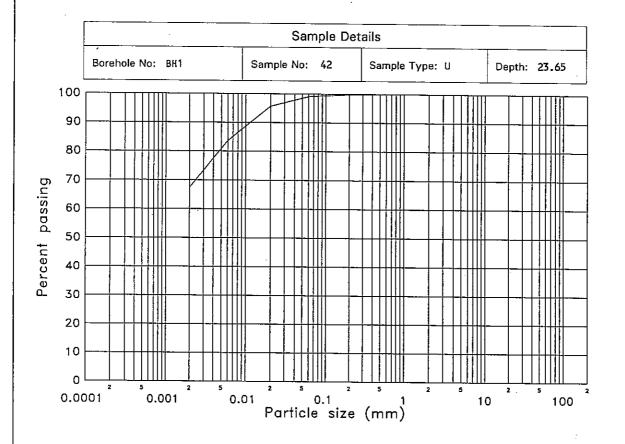


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAY		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%	SAND	%GRAVEL	%COBBLES
60	38		2	0	0
Loss on Pretreatme Test Date: Uniformity Coefficie	07/04/200	16	Description Dark gre	on y slightly sandy	CLAY

	Input by Z.S.	Date 11/04/2006	Checked by	Date 21/04/2006		
TUGRO	Project WALBR	OOK, LONDON - SI	TE INVESTIGATI	ON	Contract N	lo WAL050194
▼					Figure No	LT2/8

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

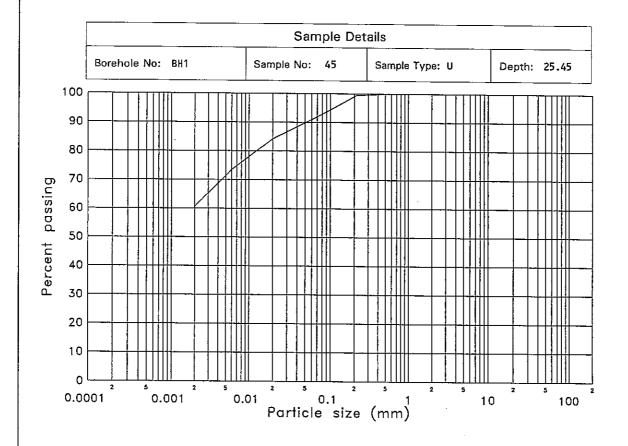


CLAV	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAY		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%	SAND	%GRAVEL	%COBBLES
53	46	1		0	0
Loss on Pretreatme Test Date: Uniformity Coeffici	10/04/20	06	Descript Dark gr	tion rey slightly sandy	CLAY

	Input by Z.S.	Date 13/04/2006	Checked by	Date 21/04/2006		
Tugro	Project WALBRO	OK, LONDON - SI	TE INVESTIGATIO	ON	Contract No	WAL050194
Y					Figure No L'	Γ2/9

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

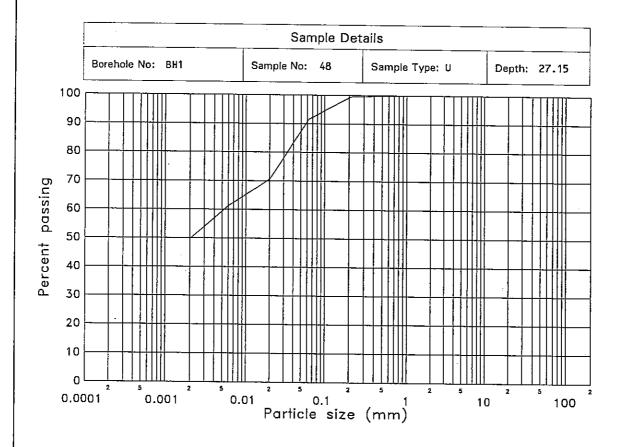


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAT		SILT			SAND		-	GRAVEL		COBBLES

%CLAY	%SILT	%SAND		%GRAVEL	%COBBLES
67	32		1	0	0
Loss on Pretreatmer Test Date: Uniformity Coefficie	07/04/200	06	Description Dark gre	on y slightly sandy	CLAY

	Input by えら.	Date 11/04/2006	Checked by	Date 21/04/200	6.	
Tugro	Project WALBROOM	K, LONDON - SI	TE INVESTIGATIO	ON	Contract No	WAL050194
					Figure No LT:	2/10 105/04

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

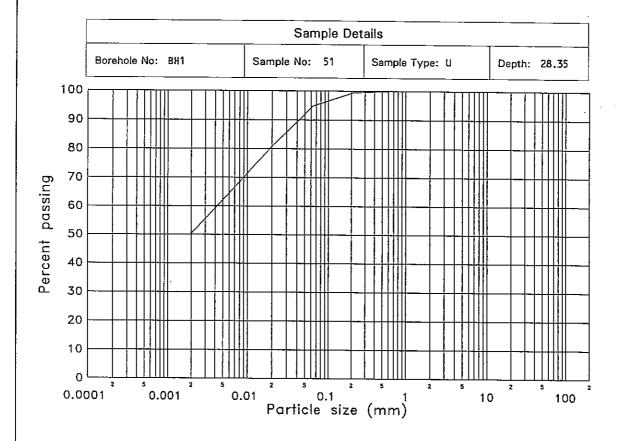


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAT		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%SAND		%GRAVEL	%COBBLES
61	30		9	0	0
Loss on Pretreatment Test Date: Uniformity Coefficie	07/04/200	6	Descrip Dark gr	tion rey slightly sandy	CLAY

	Input by Z.S.	Date 11/04/2006	Checked by	Date 21/04/2006.		
TUGRO	Project WALBROOM	K, LONDON - SI	TE INVESTIGATION	DN	Contract No	WAL050194
Y	:				Figure No L	T2/11 105/0

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

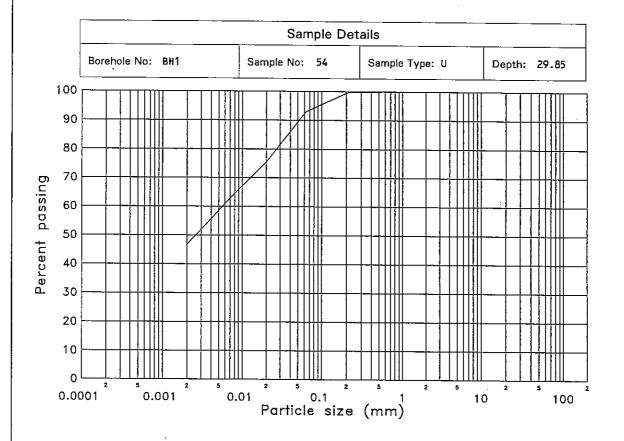


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAT		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%SAND		%GRAVEL	%COBBLES
50	42		8	0	0
Loss on Pretreatment: Test Date: Uniformity Coefficient:	Not Applic 10/04/2006 Not Applic	5	Descript Dark gr	tion rey slightly sandy	CLAY

	Input by Z.S.	Date 13/04/2006	Checked by	Date 21/04/2006.		
TUGRO	Project WALBROOK	C, LONDON - SI	TE INVESTIGATIO		Contract No	WAL050194
▼					Figure No LT	2/12

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

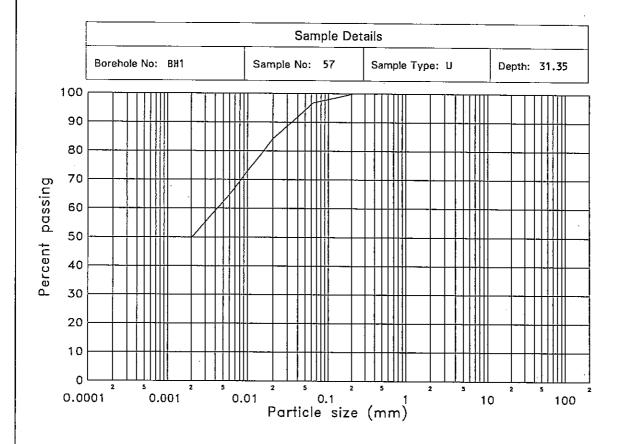


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAT		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%:	SAND	%GRAVEL	%COBBLES
50	45		5	0	0
Loss on Pretreatment Test Date: Uniformity Coefficien	10/04/200	16	Descript Dark gr	ion ey slightly sandy	CLAY

	Input by Z.S.	Date 13/04/2006	Checked by	Date 21/04/2006.			
TUGRO	Project WALBR	OOK, LONDON - SI	TE INVESTIGATI	ON	Contract N	lo WAL05	0194
					Figure No	LT2/13	105/04

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

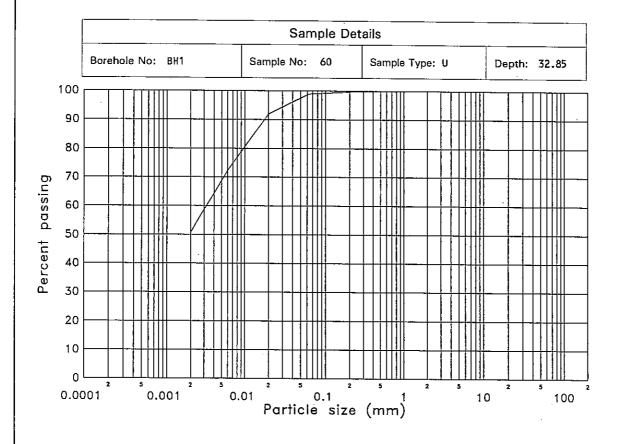


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAY		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%SAND	%GRAVEL	%COBBLES
47	46 .	7	0	0
Loss on Pretreatmer Test Date: Uniformity Coefficie	10/04/2006	5 Dark g	otion rey slightly sandy	CLAY

	Input by Z.S.	Date 13/04/2006	1 11	Date 21/04/2006		
TUGRO	Project WALBR	ROOK, LONDON - SI	TE INVESTIGATIO	ON	Contract No	WAL050194
→					Figure No L	T2/14 105/

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

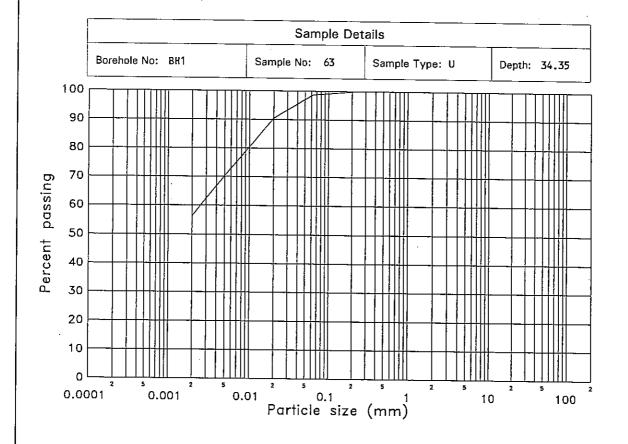


OLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAY		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	6SILT %SANE 47 3		%GRAVEL	%COBBLES
50	47			0	0
Loss on Pretreatment Test Date: Uniformity Coefficien	10/04/200	6	Descript Dark gr	ion ey slightly sandy	CLAY

	Input by Z.S.	Date 13/04/2006	Checked by Ar Soubleb.	Date 21/04/2006		
Tugro	Project WALBROOK	, LONDON - SI	TE INVESTIGATION	ON	Contract No	WAL050194
					Figure No	2/15

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5-

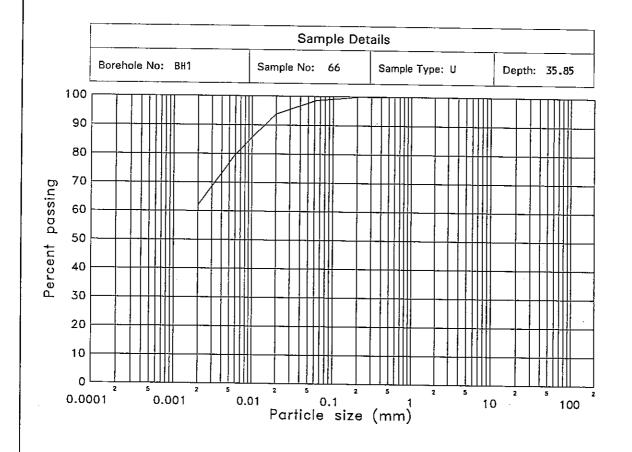


0) 4)/	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAY		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%SAND	%GRAVEL	%COBBLES
51	48	1	0	0
Loss on Pretreatme Test Date: Uniformity Coeffici	10/04/2006	Grey s	tion lightly sandy CLAY	

	Input by ス.S.	Date 12/04/2006	Checked by	Date 21/04/2006.		
Tugro	Project WALBR	OOK, LONDON - SI	· ·		Contract No	WAL050194
Y					Figure No LT	2/16 105/0

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

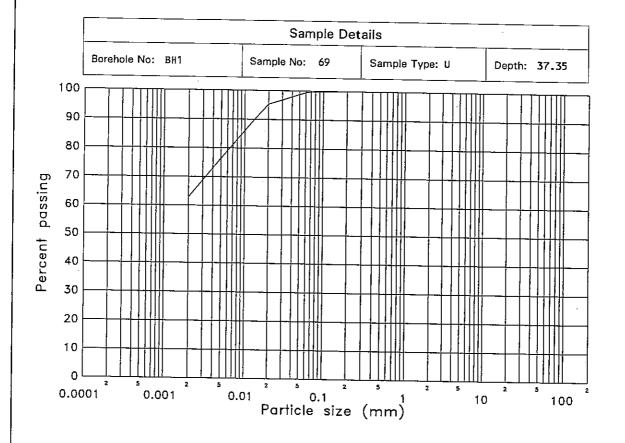


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MUIGAM	COARSE	
CLAT		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%SAND		%GRAVEL	%COBBLES
56	43		1	0	0
Loss on Pretreatment: Test Date: Uniformity Coefficient	10/04/200	6	Descript Dark gr	tion rey slightly sandy	CLAY

	Input by	Date 13/04/2006	Checked by	Date 21/04/2006				
Tugro	Project WALBROOM	C, LONDON - SI	TE INVESTIGATIO	ON	Contract	No	WAL0501	94
					Figure No	LT2/	/17	105/04

B.S. 1377: Part 2: 1990: 9:2/9:3/9.4/9.5

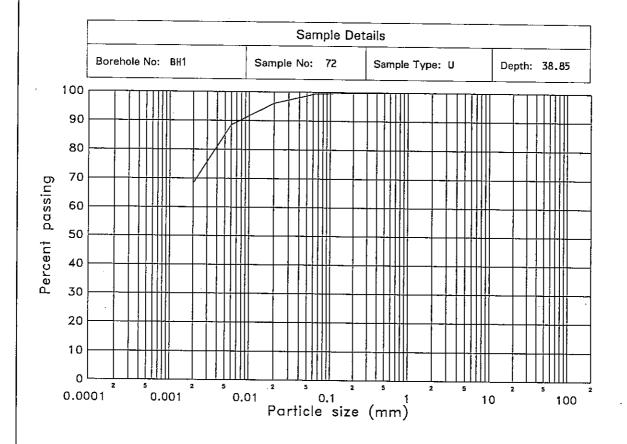


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
Jen 1		SILT	_		SAND			GRAVEL		COBBLES

%CLAY	%SILT	%	SAND	%GRAVEL	%COBBLES		
62	37	1		1 0			
Loss on Pretreatmer Test Date: Uniformity Coefficie	10/04/200	06	Descripti Dark gre	on ey slightly sandy	CLAY		

	Input by ズS。	Date 13/04/2006	Checked by	Date 22/04/2006.		
TUGRO	Project WALBRO	DOK, LONDON - SI	TE INVESTIGATIO	ON	Contract No	WAL050194
¥					Figure No LT	2/18 105/04

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

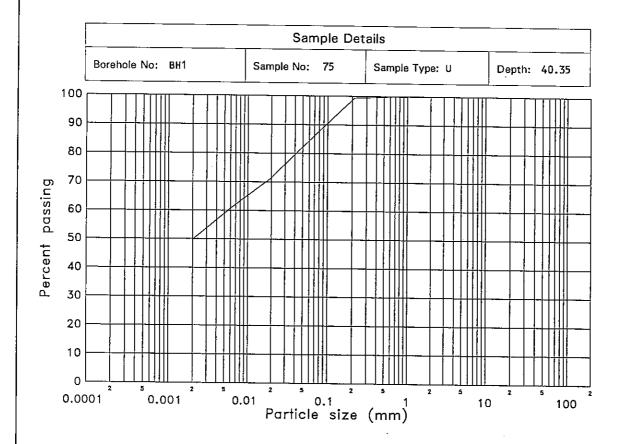


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDĮUM	COARSE	
		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%SAND		%GRAVEL	%COBBLES
63	37		0	0	. 0
Loss on Pretreatment: Test Date: Uniformity Coefficient:	10/04/200	16	Descript Dark gr	tion rey CLAY	

	Input by ZS.	Date 12/04/2006	Checked by Africated.	Date 21/04/2006.		
TUGRO	Project WALBR		TE INVESTIGATIO	•	Contract No	WAL050194
					Figure No	2/19 105

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

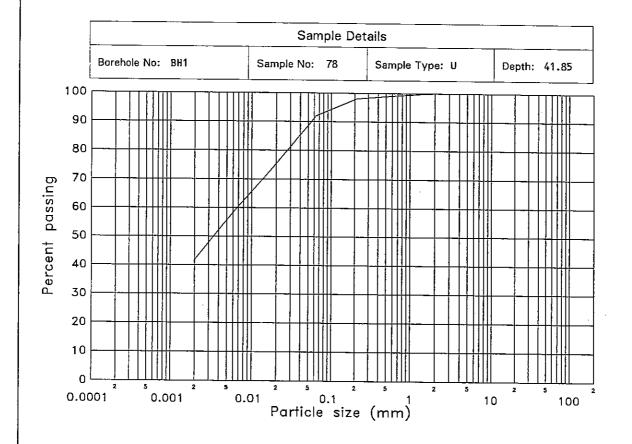


CLAY	FINE	MEDIŲM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		
CLAT	<u> </u>	SILT		· ·	SAND			GRAVEL		COBBLES	

%CLAY	%SILT	%:	SAND	%GRAVEL	%COBBLES
68	31		1	0	0
Loss on Pretreatmen Test Date: Uniformity Coefficien	11/04/200	06	Descript Dark gr	tion rey slightly sandy	CLAY

	Input by スタ	Date 18/04/2006	Checked by	Date 21/04/2006		
TUGRO	Project WALBR	OOK, LONDON - SI	TE INVESTIGATION	DN	Contract No	WAL050194
▼			<u> </u>		Figure No LT 2	2/20

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

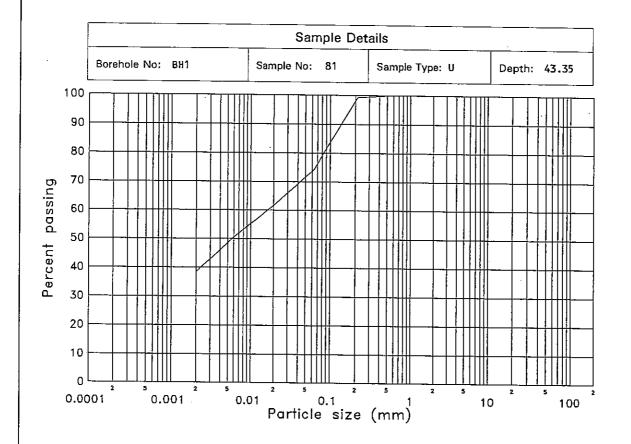


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAY		SILT			SAND			GRAVEL	·	COBBLES

%CLAY	%SILT	%	SAND	%GRAVEL	%COBBLES
50	35		15	0	0
Loss on Pretreatment Test Date: Uniformity Coefficier	10/04/200	6	Descript Dark gr	ion ey slightly sandy	CLAY

	Input by ZS.	Date 12/04/2006	Checked by AP Dublet.	Date 21/04/2006			
TUGRO	Project WALBR	OOK, LONDON - SI	TE INVESTIGATI	ON	Contract No	WAL050	194
→					Figure No.	T2/21	105/04

B.S. 1377: Part 2: 1990: 9:2/9:3/9.4/9:5

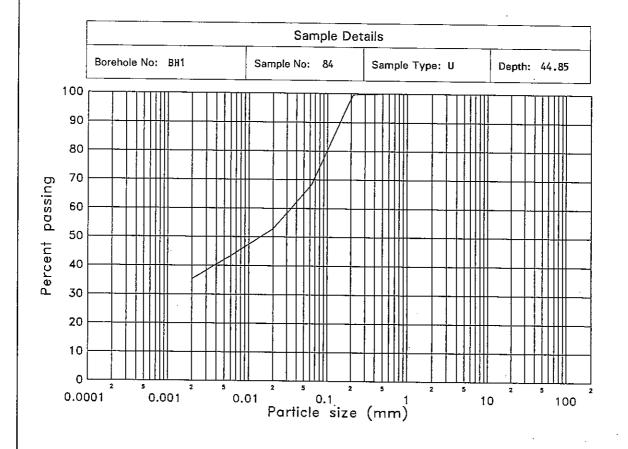


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CCAT		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%	SAND	%GRAVEL	%COBBLES
42	50		8	0	0
Loss on Pretreatme Test Date: Uniformity Coeffic	11/04/20	06	Descripti Dark gre	ion ey slightly sandy	CLAY

	Input by ZS.		Date 21/04/2006.		
TUGRO	Project WALBROOK	, LONDON - SIT	Contract No	WAL050194	
			 ——————————————————————————————————————	Figure No LT	2/22

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

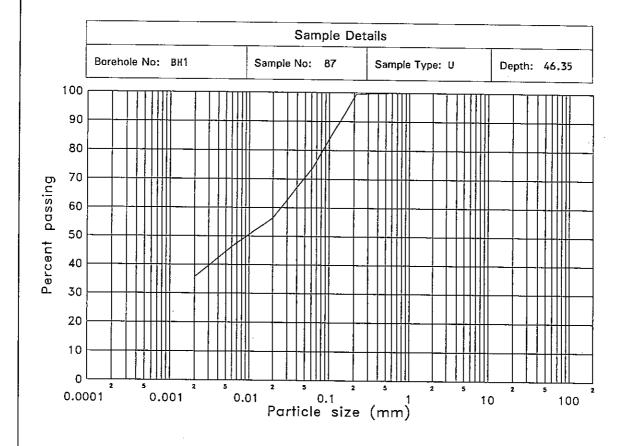


	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAY		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%SAND	%GRAVEL	%COBBLES
38	36	26	0	0
Loss on Pretreatmen Test Date: Uniformity Coefficier	11/04/200	06 Dark g	rtion rey slightly sandy	CLAY

	Input by ズタ、	Date 18/04/2006	Checked by Approved.	Date 21/04/2006.				
fugro	Project WALBR	OOK, LONDON - SI	TE INVESTIGATION	ON	Contract I	No	WAL050	194
					Figure No	LT2	/23	105/0

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

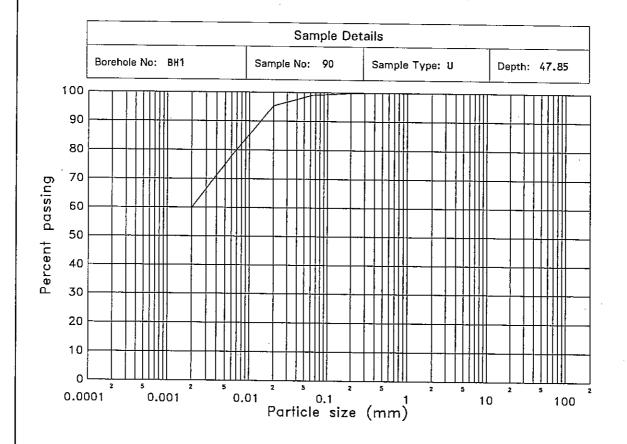


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%S.	AND_	%GRAVEL	%COBBLES
35	33		32	0	0
Loss on Pretreatmen Test Date: Uniformity Coefficier	10/04/200	06	Descript Dark gr	tion rey slightly sandy	CLAY

	Input by	Date 12/04/2006	Checked by Arbublet.	Date 21/04/2006.			
TUGRO	Project WALBR	OOK, LONDON - SII	TE INVESTIGATIO	ON	Contract No	WAL050194	4
¥					Figure No LT:	2/24 1	105/04

B.S. 1377: Part 2: 1990: 9.2/9.3/9,4/9.5

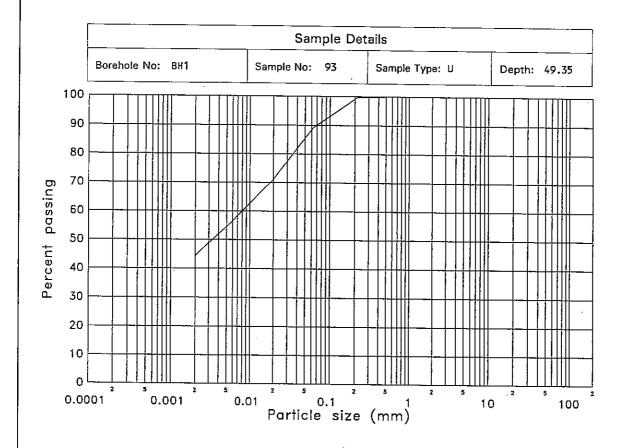


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIŲM	COARSE	FINE	MEDIUM	COARSE	
CLAT		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%s	AND	%GRAVEL	%COBBLES
36	38	26		0	0
Loss on Pretreatment: Test Date: Uniformity Coefficient:	Not Appli 10/04/200 Not Appli)6	Description Dark gre	on ey slightly sandy	CLAY

	Input by Z.S.	Date 13/04/2006	Checked by Albublet	Date 21/04/2006			
UGRO	Project WALBRO	OOK, LONDON - SI			Contract i		50194
					Figure No	LT2/25	105/0

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

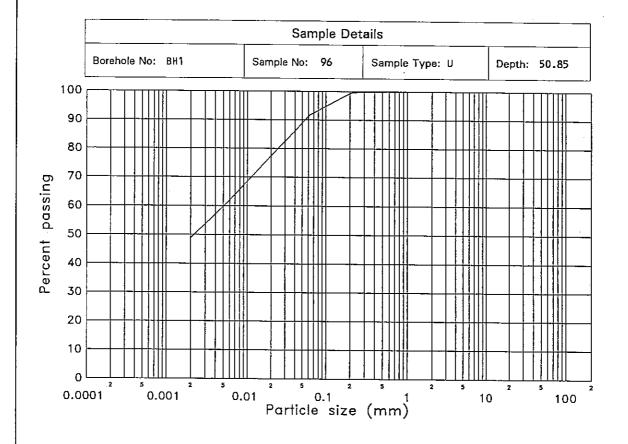


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	1	1
CEA		SILT	i		ŞAND			GRAVEL		COBBLES	l

%CLAY	%SILT	%	SAND	%GRAVEL	%COBBLES	
60	39	1		0	.0	
Loss on Pretreatment: Test Date: Uniformity Coefficient:	Not Appli 11/04/200 Not Appli	6	Descript Dark gr	cion ey slightly sandy	CLAY	

	Input by ZS.	Date 18/04/2006	Checked by Date 21/04/2006		
Tugko	Project WALBROO		TE INVESTIGATION	Contract No	WAL050194
				Figure No LT2	2/26

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

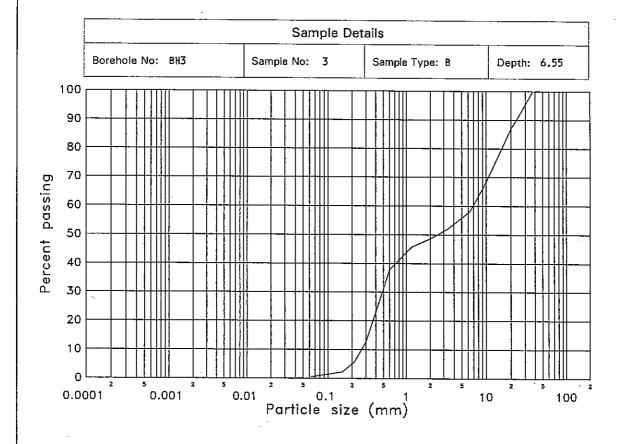


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAT		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%SAND	%GRAVEL	%COBBLES
44	45	11	0	0 .
Loss on Pretreatment Test Date: Uniformity Coefficie	11/04/200	06 Dark g	ption prey slightly sandy	CLAY

	Input by Z S.	Date 18/04/2006	Checked by	Date 21/04/2006			<u></u>
TUGRO	Project WALBR	OOK, LONDON - SI	TE INVESTIGATI	ON	Contract N	lo WAL050	194
					Figure No	LT2/27	105/0

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

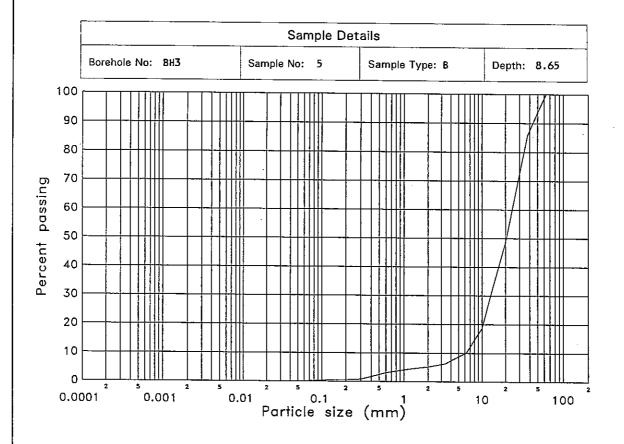


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	-
CLAY		S!LT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%	SAND	%GRAVEL	%COBBLES
49	43	8		0	0
Loss on Pretreatment Test Date: Uniformity Coefficien	11/04/20	06	Description Dark gre	on y slightly sandy	CLAY

	Input by	Date 18/04/2006	Checked by	Date 24/04/2006.			
					Contract No	WAL050194	
→							05/04

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5



0.47	FINE	MEDIUM	 FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		
CLAY		SILT		SAND		•	GRAVEL		COBBLES	

%CLAY	%SILT	%8	SAND	%GRAVEL	%COBBLES
Incl. with silt	1		48	51	0
Loss on Pretreatmen Test Date: Uniformity Coefficier	26/04/200		Descript Grey SA	ion ND and GRAVEL	

	Input by Z.S.	Date 28/04/2006	Checked by Affortsto.	Date 05/05/2006.		
TUGRO	Project WALBROO	K, LONDON - SI	TE INVESTIGATI	ON	Contract No	WAL050194
V					Figure No	72/29 105/0

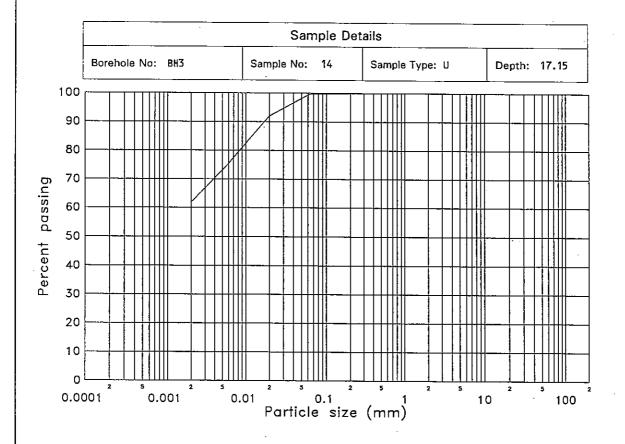
B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAY		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%	SAND	%GRAVEL	%COBBLES
Incl. with silt	0		5	95	0
Loss on Pretreatment: Test Date: Uniformity Coefficient	26/04/20		Descript Grey sa	tion andy GRAVEL	

	Input by Z.S.	Date 28/04/2006	Checked by	Date 05/05/2006		
TUGRO	Project WALBR	OOK, LONDON - SI	TE INVESTIGATI	ON	Contract No	WAL050194
→					Figure No	LT2/30 105/04

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

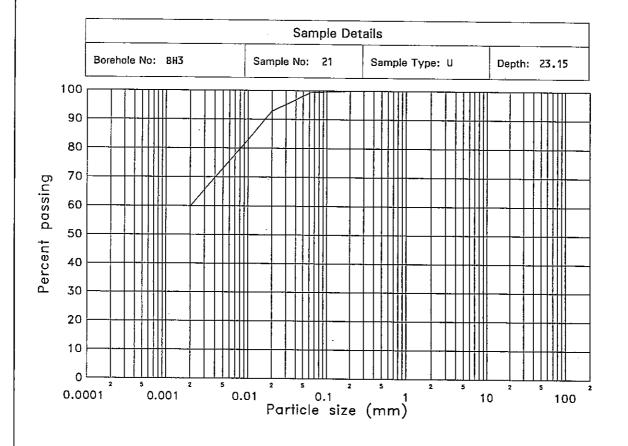


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAY		SILT			SAND			GRAVEL		COBBLES

%CLAY	%S!LT	%:	SAND	%GRAVEL	%COBBLES
59	39		2	0	0
Loss on Pretreatment: Test Date: Uniformity Coefficient:	Not Appli 25/04/200 Not Appli	16	Description Dark bro	on wn/grey slightly	sandy CLAY

	Input by ス.S.	Date 28/04/2006	Checked by Afroubtet.	Date 05/05/2006			
- Tugro	Project WALBR	ROOK, LONDON - SI			Contract No	WAL050	194
V					Figure No	T2/31	105/0

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

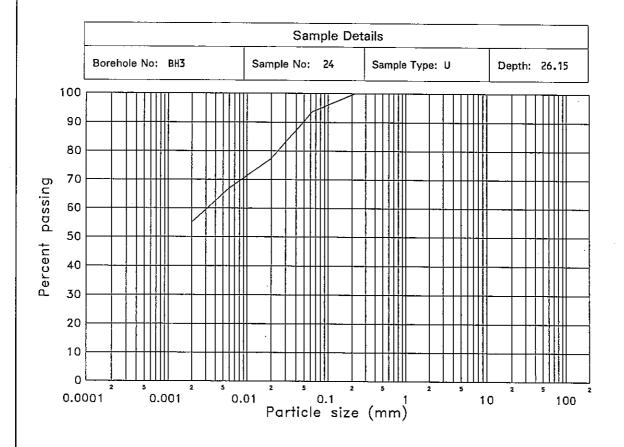


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE]
CLAY		SILT			SAND			GRAVEL		COBBLES	

%CLAY	%SILT	%	SAND	%GRAVEL	%COBBLES
62	38		0	0	0
Loss on Pretreatme Test Date: Uniformity Coefficie	25/04/200)6	Descript Dark br	tion cown/grey CLAY	

	Input by Z.S.	Date 28/04/2006	Checked by	Date 05/05/2006			
TUGRO	Project WALBROOK	, LONDON - SI	TE INVESTIGATIO)N	Contract N	lo WAL 050	0194
¥					Figure No	LT2/32	105/04

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

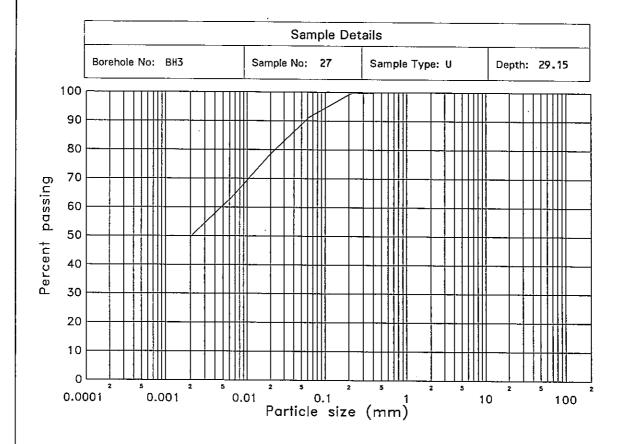


GI AV	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		1
CLAY		SILT			SANO			GRAVEL		COBBLES	

%CLAY	%SILT	%	SAND	%GRAVEL	%COBBLES
60	39		1 .	0	0
Loss on Pretreatment: Test Date: Uniformity Coefficient	25/04/200	16	Descripti Dark bro	on own/grey slightly	sandy CLAY

	Input by Z.S.	Date 28/04/2006	Checked by AP Poubleb.	Date 05/05/2006.		
Tugro	Project WALBRO	OK, LONDON - SI	TE INVESTIGATIO	NC	Contract No	WAL050194
					Figure No LT	2/33

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

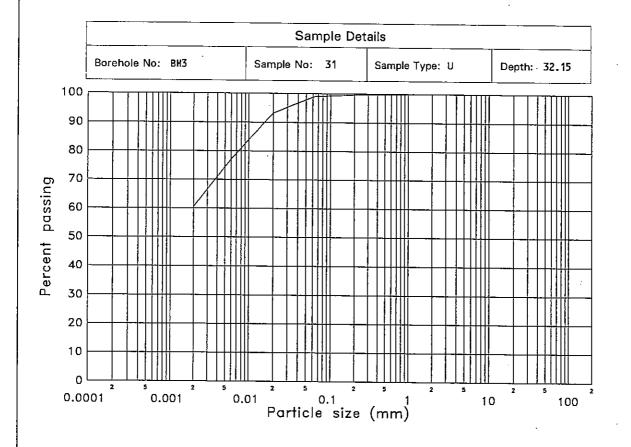


GI AV	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		1
CLAY		SILT			SAND			GRAVEL		COBBLES	İ

%CLAY	%SILT	%SAND	%GRAVEL	%COBBLES
55	39	6	0	0
Loss on Pretreatment Test Date: Uniformity Coefficier	26/04/200	06 Dark	ription brown slightly san	dy CLAY

	Input by スs.	Date 03/05/2006	Checked by	Date .05/05/2006		
TUGRO	Project WALBROOM	K, LONDON - SI	TE INVESTIGATI	ОИ	Contract No	WAL 050194
					Figure No LT 2	2/34

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

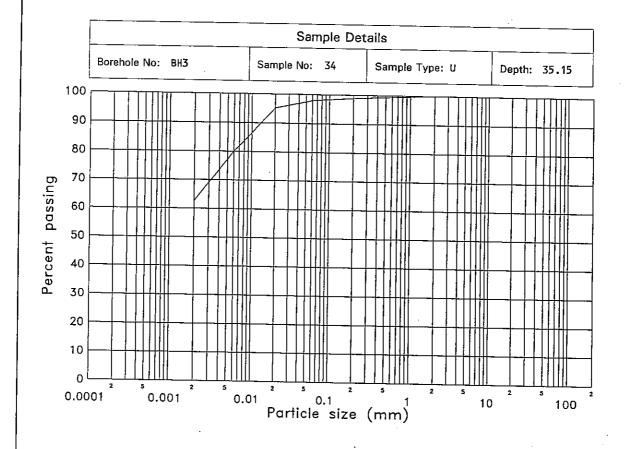


CLAY	FINE	WEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		
CLAY		SILT			SAND			GRAVEL		COBBLES	

%CLAY	%SILT	%:	SAND	%GRAVEL	%COBBLES
50	41		9	0	Ó
Loss on Pretreatment: Test Date: Uniformity Coefficient	25/04/20	06	Description Dark bro	on pwn/grey slightly	sandy CLAY

	Input by Z.S.	Date 28/04/2006	Checked by Afforbleb.	Date 05/05/2006.			
TUGRO	Project WALBROO	K, LONDON - SI	TE INVESTIGATION	ON .	Contract N		50194
→	<u> </u>				Figure No	LT2/35	105/04

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

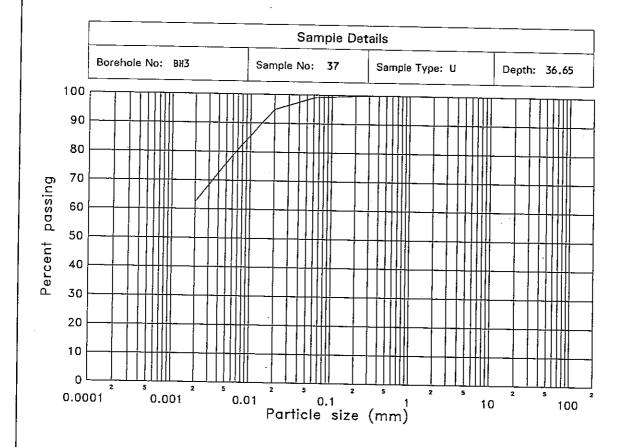


	r -									
a v	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIŲM	CDARSE	
CLAY		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%:	SAND	%GRAVEL	%COBBLES
60	39		1	0	0
Loss on Pretreatmen Test Date: Uniformity Coefficie	25/04/20	06	Descript Dark br	tion cown/grey slightly	sandy CLAY

	Input by ス.S.	Date 28/04/2006	Checked by Af Subtet.	Date 05/05	12006.		
UGRO	Project WALBR	ROOK, LONDON - SI	TE INVESTIGATI	ON	<u></u>	Contract No	WAL050194
▼						Figure No LT 2	2/36

B.S. 1377: Part 2: 1990: 9:2/9:3/9.4/9.5

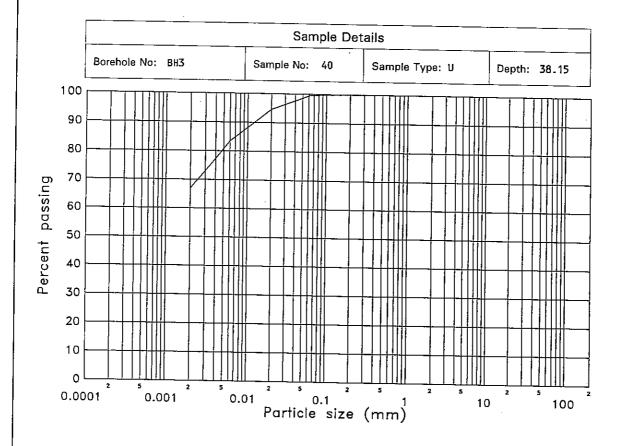


		r									
CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE]
J.C.		SILT			SANO			GRAVEL		COBBLES	ĺ

%CLAY	%SILT	%SILT %SAND 35 2		%GRAVEL	%COBBLES
63	35			0	0
Loss on Pretreatment: Test Date: Uniformity Coefficient:	Not Appli 25/04/200 Not Appli	6	Descript Dark br	ion own/grey slightly	sandy CLAY

	Input by ス.S.	Date 28/04/2006	Checked by Affoutet.	Date 05/05/2006		
UGRO	Project WALBR	ROOK, LONDON - SI	TE INVESTIGATION	ON	Contract No	WAL050194
					Figure No	2/37

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5-

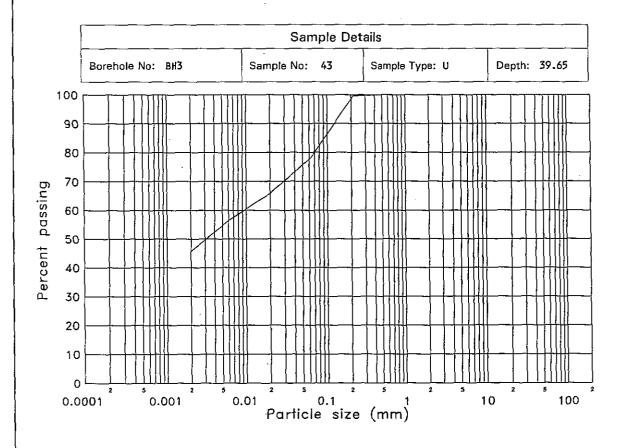


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%SILT %SAND 37 1		%GRAVEL	%COBBLES
62	37			0	0
Loss on Pretreatment: Test Date: Uniformity Coefficient	25/04/200	5	Descript Dark br	ion own/grey slightly	sandy CLAY

	Input by ヱ.S.	Date 28/04/2006	Checked by	Date 05/05/2006		
Tugro	Project WALBR	OOK, LONDON - SI			Contract No	WAL050194
					Figure No LT	2/38 10!

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5-

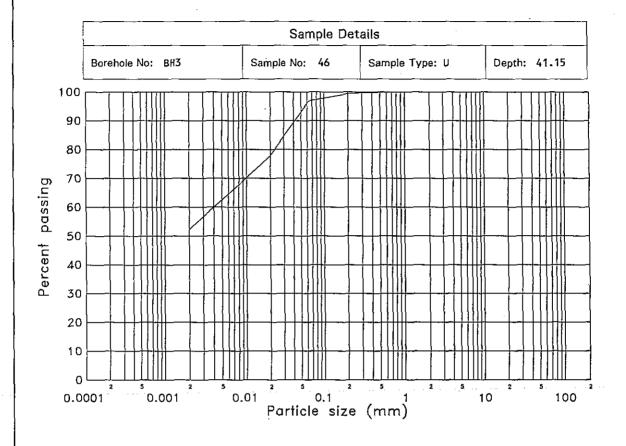


CLAY	FINE M	1EDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%SAND		%GRAVEL	%COBBLES
67	67 33		0	0	0
Loss on Pretreatment: Test Date: Uniformity Coefficient:	Not Appl 26/04/20 Not Appl	06	Descripti Brown CL		I

	Input by スぷ、	Date 03/05/2006	Checked by Af Yout to.	Date 05/05/2006		
TUGRO	Project WALBR	ROOK, LONDON - SI	•		Contract No	WAL050194
		·			Figure No LT	2/39.

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

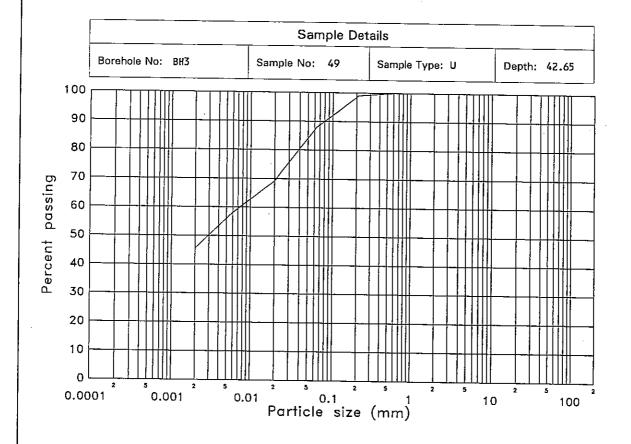


	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	WEDINW	COARSE	
CLAY		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%8	SAND	%GRAVEL	%COBBLES
46	3 2	22		0	0
Loss on Pretreatme Test Date: Uniformity Coeffici	25/04/20	06	Descripti Dark bro	on own/grey slightly	sandy CLAY

	Input by Z.S.	Date 28/04/2006	Checked by AP Toutel.	Date 05/05/2006.		
Tugeo	Project WALBROO	OK, LONDON - SI	TE INVESTIGATION		Contract No	WAL050194
					Figure No L7	72/40 _{105/04}

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

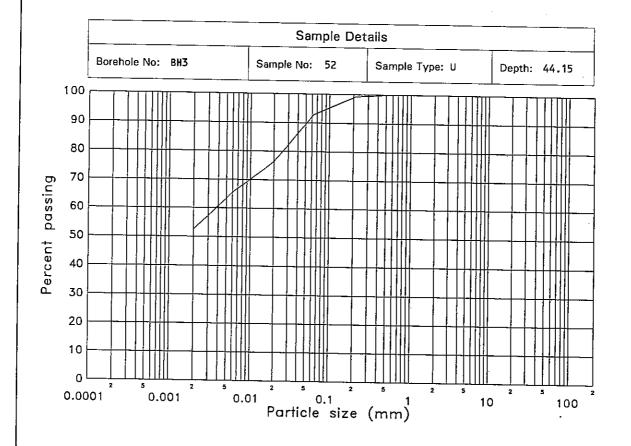


	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAY		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%5	SAND	%GRAVEL	%COBBLES
52	45		3	0	0
Loss on Pretreatment Test Date: Uniformity Coefficie	26/04/200	06	Descripti Dark bro	on own slightly sand	y CLAY

	Input by Z.S.	Date 03/05/2006	Checked by Albutter.	Date 05/05/2006.		
fugeo	Project WALBROOM	K, LONDON - SI	TE INVESTIGATION	אס	Contract No	WAL050194
					Figure No L7	2/41 105/04

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

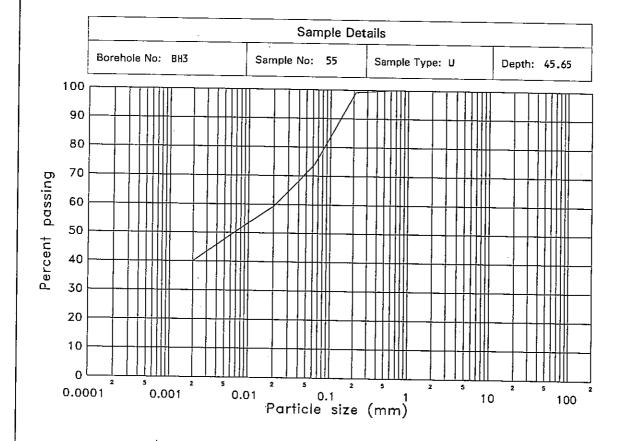


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAT		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%SILT %		%GRAVEL	%COBBLES
46	42		12	0	0
Loss on Pretreatment: Test Date: Uniformity Coefficient	26/04/200)6	Descrip Dark br	tion rown slightly sandy	/ CLAY

	Input by Z.S.	Date 03/05/2006	Checked by Affaultet.	Date 05/05/2006			
TUGRO	Project WALBR	DOK, LONDON - SI			Contract No	WAL0501	194
					Figure No LT	2/42	105/04

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

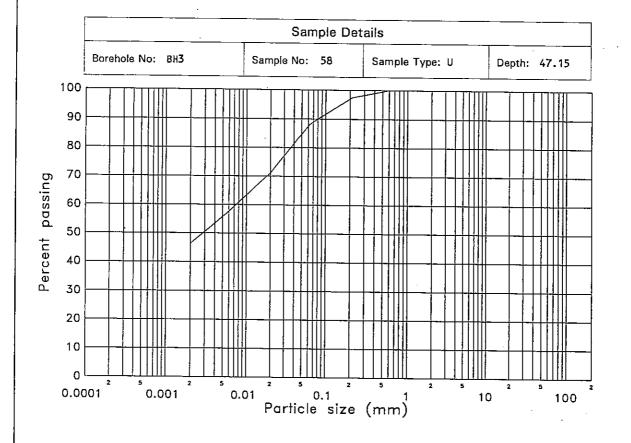


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		1
 		SILT			SAND			GRAVEL	<u>-</u>	COBBLES	ļ

%CLAY	%SILT	%	SAND	%GRAVEL	%COBBLES
52	41 .		7	0	0
Loss on Pretreatment: Test Date: Uniformity Coefficient	26/04/200	6	Descript Brown s	ion lightly sandy CLAY	,

	Input by Z.S.	Date 03/05/2006	Checked by AP Poutteb.	Date 05/05/2006			
TUGRO	Project WALBRO	OOK, LONDON - SI	<u> </u>	<u> </u>	Contract No	WAL050	194
					Figure No L?	12/43	105/04

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

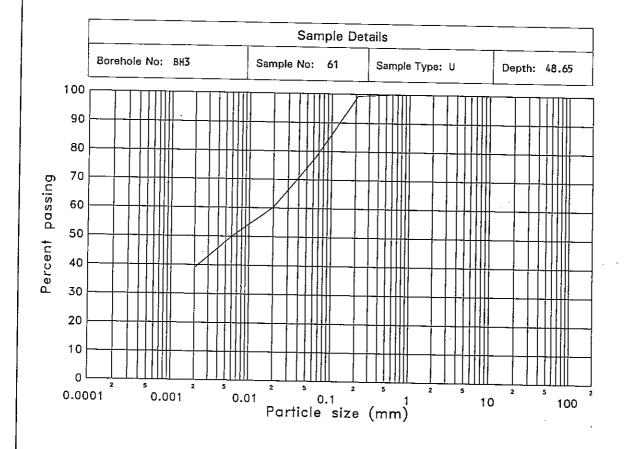


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		1
		SiLT			SAND			GRAVEL		COBBLES	l

%CLAY	%SILT	%SA	ND	%GRAVEL	%COBBLES
40	34	2	26	0	0
Loss on Pretreatment: Test Date: Uniformity Coefficient	26/04/200	6	Descript Dark br	ion own slightly sandy	CLAY

	Input by ス.S.	Date 03/05/2006	Checked by	Date 05/05/2006		
TUGRO	Project WALBR	OOK, LONDON - SI	TE INVESTIGATI	ON	Contract N	No WAL050194
	_				Figure No	LT2/44

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5-

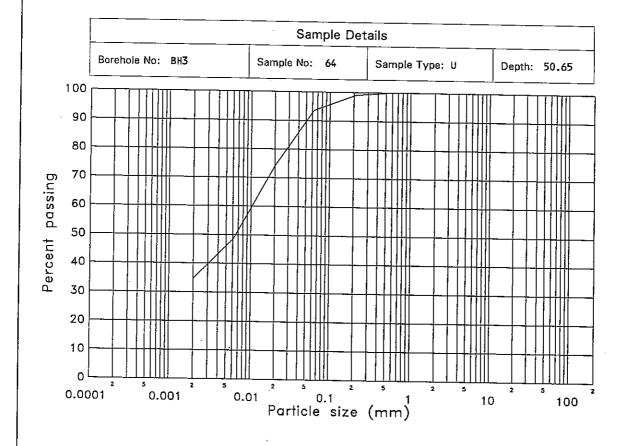


CLAY	FINE	WEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
ULAT		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	6SILT %SA		%GRAVEL	%COBBLES
46	42		12	0	0
Loss on Pretreatmen Test Date: Uniformity Coefficier	26/04/200	6	Descript Brown s	ion lightly sandy CLA	Y

	Input by Z.S.	Date 03/05/2006	Checked by Albustes.	Date 05/05/2006.		
Tugro	Project WALBS	ROOK, LONDON - SI			Contract No	WAL050194
		·	·		Figure No LT	2/45

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

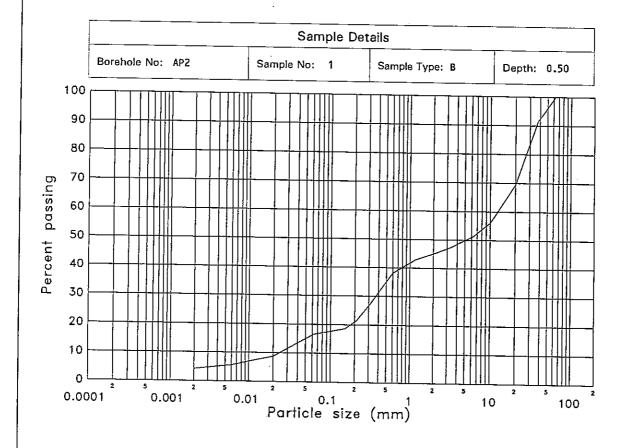


											
CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		١
- GEAT		SILT			SAND			GRAVEL		COBBLES	

%CLAY	%SILT	%SILT %SAND		%GRAVEL	%COBBLES
39	39		22	0	0
Loss on Pretreatment: Test Date: Uniformity Coefficient	26/04/200	6	Descript Dark br	tion own slightly sandy	CLAY

	Input by ス.S.	Date 03/05/2006	Checked by AP youteb.	Date 05/05/200(
TUGRO	Project WALBRO	OOK, LONDON - SI	TE INVESTIGATIO	ON .	Contract.No	WAL050194
					Figure No LT	2/46

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

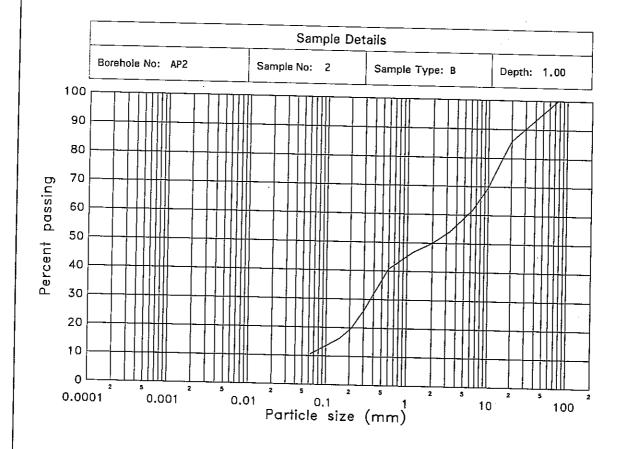


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM.	COARSE	FINE	MEDIUM	COARSE		1
- CLAT		SILT			SAND			GRAVEL		COBBLES	

%CLAY	%SILT	%SAND		%GRAVEL	%COBBLES
35	59		6	0	0
Loss on Pretreatment: Test Date: Uniformity Coefficient:	Not Appli 26/04/200 Not Appli	16	Descript Dark br	ion own/grey slightly	sandy CLAY

	Input by ス.S.	Date 03/05/2006	Checked by Af Powells,	Date 05/05/2006		
UGRO	Project WALBR	ROOK, LONDON - SI	TE INVESTIGATION	DN NC	Contract No	WAL050194
		···			Figure No LT	2/47 105/0

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

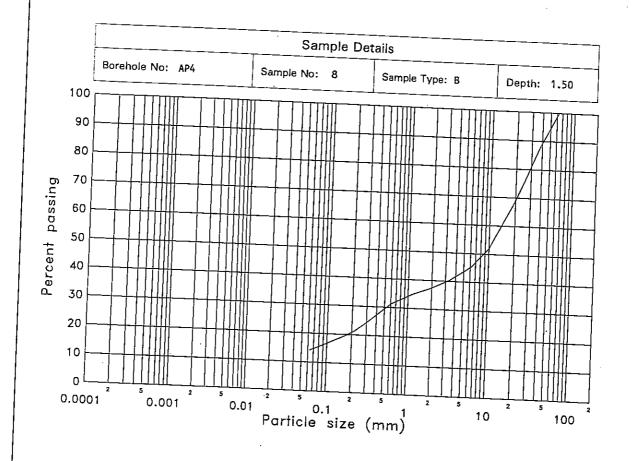


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE]
		SILT			SAND			GRAVEL		COBBLES	

%CLAY	%SILT	SILT %SAND		%GRAVEL	%COBBLES
4	13		28	· 55	0
Loss on Pretreatment Test Date: Uniformity Coefficien	10/05/200		Descript Brown v clay	tion ery sandy GRAVEL :	with a little

	Input by	Date 18/05/2006	Checked by	Date 19/05/	2006.			
TUGRO	Project WALBR	OOK, LONDON - SI				Contract No		AL050194
						Figure No	T2/4	Ω

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

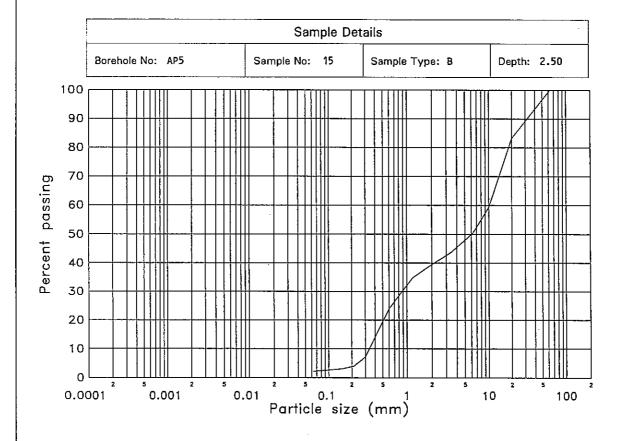


		Ϊ						——			_
CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		Ì
		SILT		·	SAND			GRAVEL		COBBLES	

%CLAY	%SILT	%SAND	%GRAVEL	%COBBLES
Incl. with silt	11	39	48	2
Loss on Pretreatment: Test Date: Uniformity Coefficient	09/05/2006	Dari able clay	cription k grey very sandy GRAN y and occasional cobb ole to meet the req. o	es (Insuff

	Input by	Date 12/05/2006	Checked by	Date 16/05/2006.		
UGRO	Project WALBR	OOK, LONDON - SI			Contract No	WAL050194
					Figure No	2/49

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

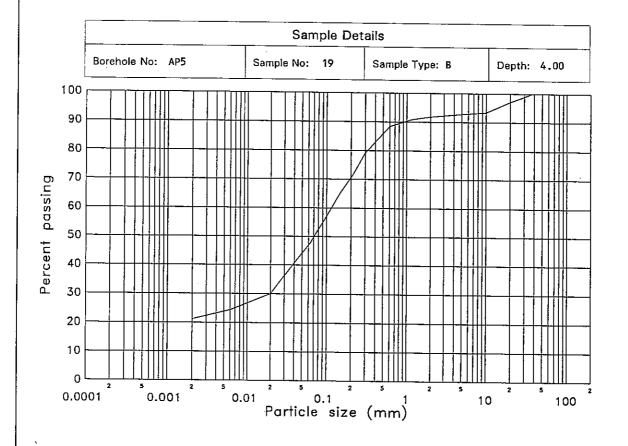


				
CLAY	FINE MEDIUM COARSE	FINE MEDIUM COARSE	FINE MEDIUM COARSE	
]	SAND	GRAVEL	COBBLES

Incl. with sitt 14 23 63 0 Loss on Pretreatment: Test Date: 09/05/2006 Uniformity Coefficient: Not Applicable Uniformity Coefficient:	%CLAY	04.5	T		T	
Loss on Pretreatment: Test Date: Uniformity Coefficient: Not Applicable 14 23 63 0 Description Brown very sandy GRAVEL with some clay (Insufficient sample to		%SILT	%5	SAND	%GRAVEI	0/0000
Loss on Pretreatment: Test Date: Uniformity Coefficient: Not Applicable Uniformity Coefficient: Not Applicable Uniformity Coefficient: Not Applicable Uniformity Coefficient: Not Applicable Uniformity Coefficient: Not Applicable Uniformity Coefficient: Not Applicable Uniformity Coefficient: Not Applicable	Incl. with silt	14		77	700,010	%COBBLES
Test Date: 09/05/2006 Brown very sandy GRAVEL with some clay Uniformity Coefficient: Not Applicable (Insufficient sample to	Loco on Duri				63	0
	Test Date:	09/05/2006		Brown ve	ery sandy GRAVEL w	ith some clay eet the

fugro	Input by Date Checked by Date 2.5. 11/05/2006 Project WALBROOK, LONDON - SITE INVESTIGATION	Contract No WAL050194
		Figure No LT 2 / 50 105/04

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

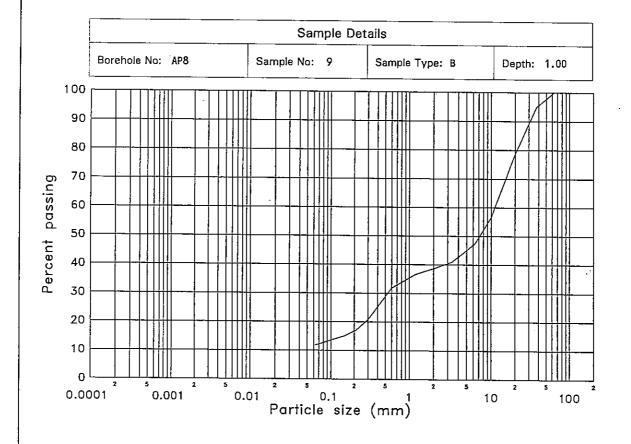


	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	1
CLAY		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%SAND	%GRAVEL	%COBBLES
Incl. with silt	2	37	61	0
Loss on Pretreatmen Test Date: Uniformity Coefficien	10/05/2006	Descript Yellowi	ion sh brown very san	dy GRAVEL

	Input by Z.S.	Date 12/05/2006	Checked by AP bublet.	Date 16/05/200		
Tugra	Project WALBROOK		Contract No	WAL 050194		
V					Figure No LT	2/51 _{105/0}

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

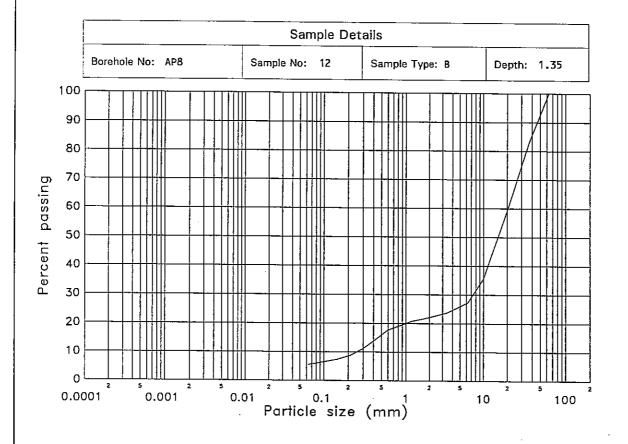


CLAY	FINE	MEDIŲM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		Ì
CLAT		SILT			SAND			GRAVEL		COBBLES	

%CLAY	%SILT	%SAND		%GRAVEL	%COBBLES
21	27			8	0
Loss on Pretreatment Test Date: Uniformity Coefficien	09/05/20	06	Descript Brown v gravel	tion ery sandy CLAY wî	th a little

	Input by ス.S.	Date 15/05/2006	Checked by AP Touble .	Date 16/05/2006			
TUGRO	Project WALBRO	DOK, LONDON - SI	TE INVESTIGATIO	DN	Contract No	WAL050194	4
				, 	Figure No L	T2/52	105/04

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

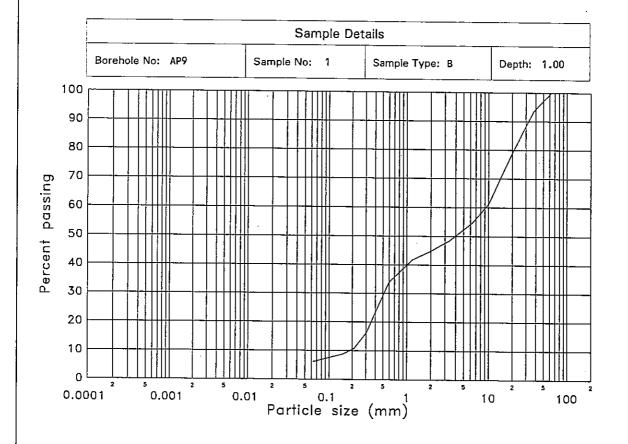


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	[
CLAI	<u> </u>	SILT			SAND			GRAVEL	·	COBBLES

%CLAY	%SILT	%SAND	%GRAVEL	%COBBLES
Incl. with silt	12	27	61	0
Loss on Pretreatment: Test Date: Uniformity Coefficient	10/05/2006		tion ery sandy GRAVEL wi	th some clay

	Input by ス.S.	Date 12/05/2006	Checked by	Date 16/05/200	6.	
fugro	Project WALBROO	OK, LONDON - SI	Contract No	WAL050194		
					Figure No LT	2/53

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

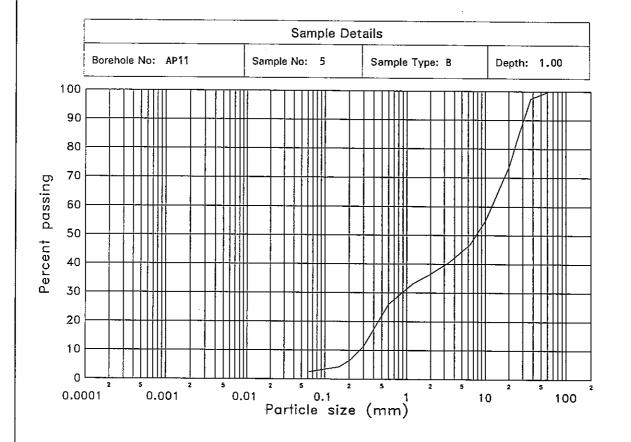


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE]
CLA1		SILT		:	SAND			GRAVEL		COBBLES	ŀ

%CLAY	%SILT	%SAND	%GRAVEL	%COBBLES			
Incl. with silt	6	16	78	0			
Loss on Pretreatment: Test Date: Uniformity Coefficient:	10/05/2006 80.8	Grey sa	escription rey sandy GRAVEL with a little clay Insufficient sample to meet the equirements of BS1377)				

	Input by ス.S.	Date 12/05/2006	Checked by Al Youbleb.	16/05/2006		
Tugro	Project WALBR	OOK, LONDON - SI			Contract No	WAL050194
					Figure No LT	2/54 105/04

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

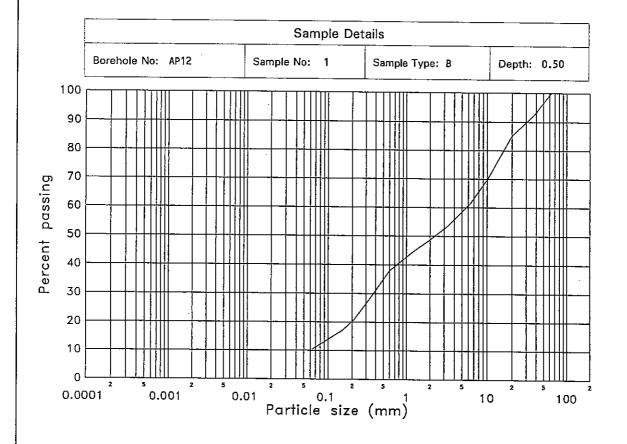


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAT		SILT			SAND			GRAVEL	-	COBBLES

%CLAY	%SILT	%SAND	%GRAVEL	%COBBLES	
Incl. with silt	6	39	55	0	
Loss on Pretreatment: Test Date: Uniformity Coefficient	10/05/2006	Descript Yellowi little	sh brown very sand	dy GRAVEL with a	

	Input by ス.S.	Date 12/05/2006	Checked by	Date 16/05/2006.		
TUGRO	Project WALBR	OOK, LONDON - SI	TE INVESTIGATI	ON	Contract No	WAL050194
→					Figure No LT	2/55

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

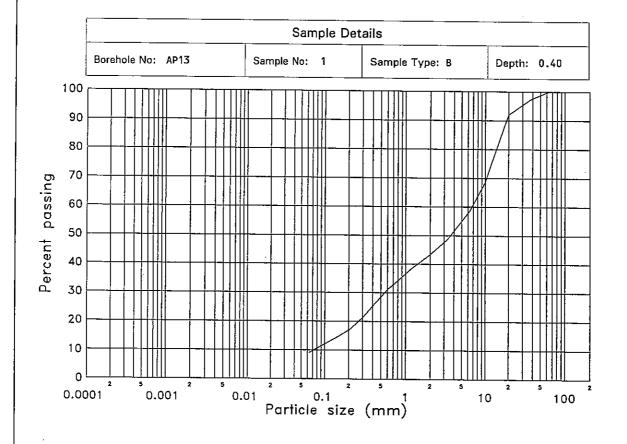


CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
CLAT		SILT			SAND			GRAVEL		COBBLES

%CLAY	%SILT	%SAND	%GRAVEL	%COBBLES	
Incl. with silt 3		34	63	0	
Loss on Pretreatment: Test Date: Uniformity Coefficient:	09/05/2006 44.9	Descrip Yellowi	ition ish brown very sandy GRAVEL		

	Input by て.S、	Date 11/05/2006	Checked by	Date 16 05 2006.	-	
Tugro	Project WALBR	OOK, LONDON - SI	TE INVESTIGATI	ON	Contract No	WAL050194
					Figure No	T2/56 105/04

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

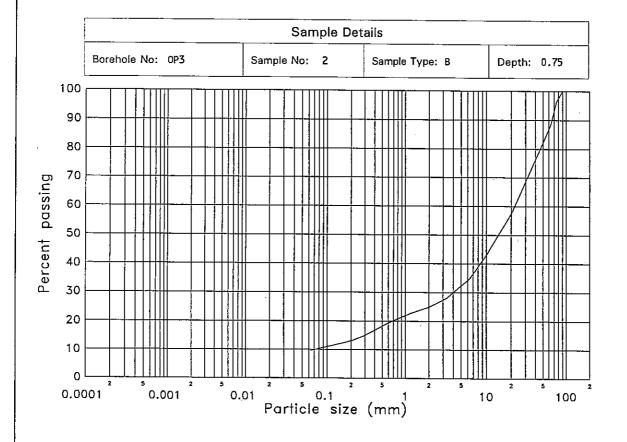


GI AV	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEOIUM	COARSE	
CLAY	·	SILT			SAND		-	GRAVEL		COBBLES

%CLAY	%SILT	%SAND	%GRAVEL	%COBBLES
Incl. with silt	10	39	51	0
Loss on Pretreatmer Test Date: Uniformity Coefficie	10/05/2006	1	tion very sandy GRAVEL w	rith a little

	Input by Z.S.	Date 12/05/2006	Checked by Al Toubleb.	Date 16/05/2006.			
TUGRO	Project WALBR	OOK, LONDON - SI	TE INVESTIGATION	ON	Contract No	WAL0501	94
У					Figure No LT 2	 2/57	105/04

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5



CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		
ÇLAT		SILT			SAND			GRAVEL		COBBLES	

%CLAY	%SILT	%SAND	%GRAVEL	%COBBLES
Incl. with silt	9	34	57	0
Loss on Pretreatment: Test Date: Uniformity Coefficient:	09/05/2006 93.4	Descript Brown v clay	tion very sandy GRAVEL w	ith a little

	Input by Z.S.	Date 11/05/2006	Checked by	Date 16/05/2006			
TUGRO	Project WALBI	ROOK, LONDON - SI	TE INVESTIGATIO	DN	Contract No	WAL0501	194
V €					Figure No L	T2/58	105/

B.S. 1377: Part 2: 1990: 9.2/9.3/9.4/9.5

CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		
CLAY		SILT			SAND			GRAVEL	- .	COBBLES	ļ

%CLAY	%SILT	%SAND	%GRAVEL	%COBBLES
Incl. with silt	10	15	63	12
Loss on Pretreatment: Test Date: Uniformity Coefficient:	09/05/2006 305.3	little	tion andy GRAVEL with so clay (Insufficient quirements of BS137	sample to meet

	Input by Z.S.	Date 12/05/2006	Checked by Arbublet.	Date 16/05/	2006.	- ^ '		
TUGRO	Project WALBROOM	K, LONDON - SI	TE INVESTIGATIO	ON		Contract No	WAL0501	94
						Figure No LT 2	2/59	105/0

						Sp	ecimen D	etails						Une	drained Tr	iaxial Co	mpressio	n Results	(Total Stress)
Hole	Туре	Depth	Sample No.	Speci- men Depth mm	Test Type	Prepar- ation	Dimen- sions mm	Initial Pr w %	γ _b Mg/m³	γ _d Mg/m³	Rate of Strain %/min	Membrane Thickness mm	Cell Pressure kN/m²	Membrane Correction * kN/m²	Maximum Deviator Stress kN/m ²	Failure Strain %	Mode of Failure	Cohesion (Avg) kN/m²	Description
ви1	U	6.45	4	30	UU	U	201,105	29	1.94	1.50	0.60	0.22	195	0.47	138	8.90	С	69	Firm brown/grey slightly sandy CLAY with a little gypsum
вн1	U	8.15	8	25	UU	U	202,105	. 33	1.89	1.42	0.69	0.22	245	0.38	173	6.90	В	86	Stiff brown slightly sandy CLAY with a little gravel (fine)
вн1	U	10.15	14	25	UU	U	201,104	31	1.96	1.49	0.60	0.22	305	0.28	233	5.00	В	117	Stiff dark grey/brown slightly sandy CLAY
вн1	U	11.55	17	35	UU	U	201,105	30	1.95	1.50	0.69	0.22	350	0.15	145	2.50	В	73	Firm dark grey/brown slightly sandy CLAY
вн1	U	13.05	20	30	UU	U	201,105	28	1.77	1.38	0.60	0.22	390	0.30	213	5.50	В	106	Stiff dark grey/brown slightly sandy CLAY
вн1	U	14.65	23	30	UU	U	202,104	28	2.01	1.58	0.60	0.22	440	0.35	274	6.50	В	137	Stiff dark grey slightly sandy CLAY
вн1	U	16.05	26	15	UU	U	201,105	27	2.00	1.58	0.60	0.22	480	0.12	261	2.00	В	131	Stiff dark grey/brown slightly sandy CLAY
Key: Prepara	ition: Ri	EM - rem	noulded		Test	Гуре: UU	<u> </u>		lidated ur		<u></u> _	···-	Mode	of Failure:	B - Bri	ttle C - C	ombined	* La	atex Membranes used
	U	und	fisturbed			Input L	ру	nconso	lidated un Dat	е	nultistage 04/2006		Doubl	eb.	P - Pla Date	stic 24/04/20	006		
-w-	fu	GRO	3			Project	t			WALBROO	K, LOND	ON - SITE	INVESTI	GATION	·	<u> </u>		Contr	act No WAL050194
																		Figure	e No LT5/ 1 104/05

						Sp	ecimen De	etails						Und	drained Tr	iaxial Co	mpressio	n Results	(Total Stress)
Hole	Туре	Depth	Sample No.	Speci- men Depth	Test Type	Prepar- ation	Dimen-	nitial P	roperties	Υ _d	Rate of Strain	Membrane Thickness	Cell Pressure	Membrane Correction	Deviator	Failure Strain	Mode of Failure	Cohesion (Avg)	Description
	1			mm	ĺ		sions mm	%	Υ _b Mg/m³	Mg/m³	%/min	mm	kN/m²	kN/m²	Stress kN/m²	%		kN/m²	
вн1	Ш	17.55	29	60	UU	U	202,105	28	1.97	1.53	0.59	0.22	525	0.33	287	5.90	В	143	Stiff dark grey/brown slightly sandy CLAY
вн1	U	19.05	32	35	UU	U	202,105	26	1.97	1.56	0.60	0.22	570	0.40	303	7.40	В	151	Very stiff dark grey/brown slightly sandy CLAY
BH1	U	20.65	36	35	UU	U	202,105	28	1.99	1.55	0.60	0.22	620	0.28	242	5.00	В	121	Stiff dark grey/brown slightly sandy CLAY
ВН1	U	22.15	39	55	uu	Ш	189,105	25	2.00	1.60	1.06	0.22	665	0.43	388	7.90	В	194	Very stiff dark grey/brown slightly sandy CLAY
BK1	П	23.65	42	35	uu	U	201,104	29	2.08	1.61	0.60	0.22	710	0.43	294 _.	7.90	В	147	Stiff dark grey/brown slightly sandy CLAY
вн1	U	25.45	45	30	UU	U	181,105	27	1.98	1.56	1.11	0.22	765	0.31	369	5.50	В	184	Very stiff dark grey/brown slightly sandy CLAY
		-nac												(5.1)		wh. 0. 0			
y: Prepara	ation: R U	EM - rem - und	roulded listurbed		Test	Type: UU UU	- տ <u>Mi- u</u>		lidated un lidated un		nultistage			of Failure:	P - Pla	ttle C - C stic	ombined	* La	atex Membranes used
			,			Input b ズ.S			Date	_	4/2006	Che A	cked by Doubl	ab.	Date	24/04/20	006		·
	拒	GRO			J	Project				WALBROO	K, LOND	ON - SITE	INVEST	GATION				Contr	ract No WAL050194
		$= \stackrel{\widehat{\wedge}}{\hat{\sim}}$																Figure	e No LT5/2

						Sp	ecimen D	etails		•				Un	drained Tr	iaxial Co	mpressio	n Results	(Total Stress)
Hole	Typė	Depth	Sample No.	Speci- men Depth mm	Test Type	Prepar- ation	Dimen- sions mm	initial Pi w %	γ _b Mg/m³	Υ _d Mg/m³	Rate of Strain %/min	Membrane Thickness mm	Cell Pressure kN/m²	Membrane Correction * kN/m²	Maximum Deviator Stress kN/m ²	Failure Strain %	Mode of Failure	Cohesion (Avg) kN/m ²	Description
вн1	U	29.85	54	25	UU	U	201,105	25	2.05	1.64	0.99	0.22	895	0.69	407	14.40	В	203	Very stiff dark grey/brown slightly sandy CLAY
BH1	U	31.35	57	55	UU	U	201,104	25	2.05	1.64	0.99	0.22	940	0.28	688	5.00	В	344	Very stiff dark grey/brown slightly sandy CLAY
вн1	U	32.85	60	15	UU	U	201,104	26	2.05	1.63	0.99	0.22	985	0.28	483	5.00	В	242	Very stiff dark grey slightly sandy CL#
вк1	U	34.35	63	30	UU	U	201,104	26	2.05	1.63	0.99	0.22	1030	0.28	574	5.00	В	287	Very stiff dark grey slightly sandy CLA
вн1	U	35.85	66	15	UU	U	201,104	46	1.99	1.37	0.99	0.22	1075	0.33	91	6.00	С	45	Firm dark grey slightly sandy CLAY
вн1	U	38.85	72	35	טט	U	202,104	27	2.00	1.57	1.09	0.22	1165	0.23	583	4.00	В	292	Very stiff dark grey slightly sandy CLA
вн1	U	41.85	78	30	UU	U	201,104	20	1.92	1.60	0.99	0.22	1255	0.16	477	2.70	В	239	Very stiff grey/brown slightly sandy CLAY
вк1	U	46.35	87	35	UU	Į	189,104	19	1.99	1.67	1.06	0.22	1390	0.54	624	10.60	В		Very stiff dark grey slightly sandy CLA
(ey: Prepara	tion: RI	M - rem	oulded isturbed		Test 1	Type: UU UU	- u Mu	nconsol nconsol	idated und idated und	drained drained m	ultistage			of Failure:	B - Brit P - Plas	tle C-Co stic	ombined	* La	tex Membranes used
						Input b ス.S	у		Date	;	4/2006	Che	cked by	т Т	Date	24/04/20	06		
	Ţu	GRO] 			Project		<u></u>	<u> </u>	WALBROO	K, LONDO	N - SITE						Contra	act No WAL050194
		$= \hat{\gtrless}$																Figure	No LT5/3

						Sp	ecimen D	etails						Un	drained Tr	iaxial Co	mpressio	n Results	(Total Stress)
Hole	Туре	Depth	Sample No.	Speci- men Depth mm	Test Type	Prepar- ation	Dimen- sions mm	Initial Pr w %	operties Υ _b Mg/m³	γ _d Mg/m³	Rate of Strain %/min	Membrane Thickness mm	Cell Pressure kN/m²	Membrane Correction * kN/m²	Maximum Deviator Stress kN/m ²	Failure · Strain %	Mode of Failure	Cohesion (Avg) kN/m²	Description
вн3	U	10.45	7	55	UU	U	202,105	27	2.00	1.58	0.74	0.22	315	0.45	222	8.40	В	111	Stiff dark brown/grey slightly sandy CLAY
вн3	υ	14.15	11	60	UU	U	201,104	27	2.05	1.62	0.99	0.22	425	0.18	208	3.00	В	104	Stiff dark brown/grey slightly sandy CLAY
внз	U	17.15	14	35	UU	U	184,104	28	2.04	1.59	0.98	0.22	515	0.19	221	3.30	В	111	Stiff dark brown/grey CLAY
вн3	U	23.15	21	60	UU	U	193,104	25	2.08	1.66	0.93	0.22	695	0.34	463	6.20	В	232	Very stiff dark brown/grey CLAY
внз	U	26.15	24	7 5	UU	U	201,105	26	2.01	1.59	1.04	0.22	785	0.20	340	3.50	В	170	Very stiff dark brown/grey slightly sandy CLAY
вн3	U	29.15	27	130	UU	U	201,104	23	2-08	1.69	0.90	0.22	875	0.30	487	5.50	В	243	Very stiff dark brown/grey slightly sandy CLAY
BH3	U	32.15	31	35	UU	U	201,105	25	2.00	1.59	0.89	0.22	965	0.58	347	11.40	В	174	Very stiff dark brown/grey CLAY
ey: Prepara	tion: Bi	EM - rem	oulded		Test 1	Type: UU		nconsol	idated un-	drained		ļ	Mode	of Failure:	R - Brit	tle C - Co	mhinad	*1:	ntex Membranes used
or. rropala	U.	- und	isturbed			Input b	<u>М - u</u> У	nconsol	Date	drained m e	ultistage 5/2006		cked by		P - Plas Date	itic 16/05/20	•		TO MONOTATION USBU
	<u>Fu</u>	GRO]			Project				WALBROOK	K, LONDO	N - SITE			•		****	Contr	act No WAL050194
																		Figure	: No LT5/:/4 104/08

						Sp	ecimen De	etails						Und	drained Tr	iaxial Co	mpressior	Results	(Total Stress)
Hole	Туре	Depth	Sample No.	men Depth	Test Type	Prepar- ation	Dimen- sions	initial Pr w %	operties Υ _b Mg/m³	γ _d Mg/m³	Rate of Strain %/min	Membrane Thickness mm	Cell Pressure kN/m²	Membrane Correction * kN/m²	Maximum Deviator Stress kN/m ²	Failure Strain %	Mode of Failure	Cohesion (Avg) kN/m²	Description
вн3	U	35.15	34	65	บบ	U	mm 202,105	28	2.03	1.59	0.69	0.22	1055	0.13	319	2.20	В	160	Very stiff dark brown/grey CLAY
вн3	υ	3 6.65	37	35	UU	U	202,104	26	2.07	1.65	0.50	0.22	1100	0.33	644	5.90	В	322	Very stiff dark brown/grey CLAY
BH3	U	39.65	43	65	UU	U	201,104	26	1.97	1.57	0.60	0.22	1190	0.22	205	3.70	С	102	Stiff dark brown/grey slightly sandy CLAY
внз	U	44.15	52	50	טט	U	200,105	25	1.95	1.56	0.50	0.22	1325	0.18	311	3.00	С	156	Very stiff brown slightly sandy CLAY
вн3	U	45.65	55	150	טט	ប	199,106	21	1.95	1.61	0.50	0.22	1370	0.24	371	4.30	В	185	Very stiff dark brown/grey slightly sandy CLAY
8H3	U	47.15	58	70	ນນ	U	202,105	23	1.98	1.61	0.50	0.22	1415	0.33	766	5.90	В	383	Very stiff brown slightly sandy CLAY
внз	U	48.65	61	50	uu	U	202,105	20	2.02	1.68	0.49	0.22	1460	0.27	334	4.70	В	167	Very stiff dark brown slightly sandy CLAY with a little gravel (fine)
															į	:			
Key: Prepara	tion: RI	EM - rem	oulded listurbed		Test	Type: UU UU	J - u JM - u		idated un idated un		nultistage		Mode	of Failure:	B - Bri P - Pla	ttle C - C stic	ombined	* La	atex Membranes used
					·	Input I	ογ ΄		Date	е	5/2006	Che	cked by	et.	Date	16/05/20	106		
FUGRO Project						WALBROO	K, LONDO	ON - SITE	INVESTI	GATION				Contr	act No WAL050194				
		$\stackrel{\widehat{\sim}}{=}$																Figure	o No LT5/₁-5 104

ANALYSIS RESULTS PAGE 1 OF 4 PAGES

11 April 2006

Mr T Doublet
Fugro Limited
Fugro House
Hithercroft Road
Wallingford
Oxfordshire
OX10 9RB

Test Report: FESL/D4771

Dear Mr Doublet

Please find enclosed the results of the analysis carried out on the samples submitted from Walbrook London Site Investigation on 31 March 2006.

I trust you will find these satisfactory but should you have any queries please contact customer services.

Yours sincerely

J A Selbie

SECTION MANAGER INORGANICS

Determinations marked * in this certificate are not included in the UKAS accreditation schedule for our laboratory. Opinions and interpretations expressed herein, and marked #, are outside the scope of UKAS accreditation. Determinations marked \$ were subcontracted. Unless otherwise stated, Severn Trent was not responsible for sampling. Information about methods and performance characteristics of the determinations are available on request. Unless otherwise agreed, as received soils will be disposed of after 30 days; dried soils after 30 days and waters/leachates after 10 days from the issue of the final report. Soil analysis is carried out on air-dried and ground test portion of the sample.

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Soil Analysis

PAGE 2 OF 4

FESL/D4771

Walbrook London Site Investigation Your Reference:- WAL050194

Your Order:- W0478

CAS Number:			814627	014630	014600
Sample Ref				814628	814629
Detname	Method	Units	BH1/5 6.85m	BH1/15	BH1/24
Stones %*			··	10.55m	15.10m
	Q.P.5.4.I	%	35	54	50
Moisture @ 30°C*	33A	%	19	19	17
Sulphate (Total) as SO3	45	%	1.1	0.17	0.15
pH	39	pH units	7.9	8	8.3

<u>Key</u>

N/S - Not Scheduled I/S - Insufficient Sample

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Soil Analysis

PAGE 3 OF 4

FESL/D4771

Walbrook London Site Investigation Your Reference:- WAL050194

Your Order:- W0478

CAS Number:			814630	814631	814632
Sample Ref			BH1/38	BH1/46	BH1/59
Detname	Method	Units	21.15m	25.90m	31.85m
Stones %*	Q.P.5.4.I	%	50	52	44
Moisture @ 30°C*	33A	%	18	17	18
Sulphate (Total) as SO3	45	%	0.06	0.14	0.07
pH	39	pH units	8.5	8.2	8.4

<u>Key</u>

N/S - Not Scheduled I/S - Insufficient Sample

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Soil Analysis

PAGE 4 OF 4

FESL/D4771

Walbrook London Site Investigation Your Reference:- WAL050194

Your Order:- W0478

CAS Number: Sample Ref Detname	Method	Units	814633 BH1/71 37.85m	814634 BH1/89 46.85m
Stones %*	Q.P.5.4.I	%	52	55
Moisture @ 30°C*	33A	%	18	15
Sulphate (Total) as SO3	45	%	0.06	< 0.02
pН	39	pH units	8.5	8.1

<u>Key</u>

N/S - Not Scheduled I/S - Insufficient Sample

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Soil Analysis

FESL/D4771

Wallbrook London Site Investigation Your Reference:- WAL050194

Your Order:- W0478

CAS Number	 -		Limit	814635				
Sample Ref Detname	Method	Units	Of Detection	AQC	+3s	+2s	-2s	-3s
Sulphate (Total) as SO3	45	%	0.0200	0.18	0.2180	0.1980	0.1180	0.0980
pH	39	pH units	2.0000	8.1	8.3600	8.2300	7.7100	7.5800

ANALYSIS RESULTS PAGE 1 OF 4 PAGES

10 May 2006

Mr T Doublet
Fugro Engineering Services Limited (Southern)
Fugro House
Hithercroft Road
Wallingford
Oxfordshire
OX10 9RB

Test Report: FESB/D5223

Dear Mr Doublet

Please find enclosed the results of the analysis carried out on the samples submitted from Walbrook London on 26 April 2006.

I trust you will find these satisfactory but should you have any queries please contact customer services.

Yours sincerely

P Woodbridge

INORGANICS MANAGER

Determinations marked * in this certificate are not included in the UKAS accreditation schedule for our laboratory. Opinions and interpretations expressed herein, and marked #, are outside the scope of UKAS accreditation. Determinations marked \$ were subcontracted. Unless otherwise stated, Severn Trent was not responsible for sampling. Information about methods and performance characteristics of the determinations are available on request. Unless otherwise agreed, as received soils will be disposed of after 30 days; dried soils after 30 days and waters/leachates after 10 days from the issue of the final report. Soil analysis is carried out on air-dried and ground test portion of the sample.

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Soil Analysis

PAGE 2 OF 4

FESB/D5223 Walbrook London Your Reference:- WAL050194 Your Order:- W0514

CAS Number:			819892	819893	819894	819895
Sample Ref			вн3	вн3	внз	BH3
Detname	Method	Units	10.90m	20.55m	24.65m	30.65m
Moisture @ 30°C*	33A	%	19	14	17	17
Stones %*	Q.P.5.4.I	%	0.14	0.22	0.1	0.08
Sulphate (Total) as SO3	45	%	0.16	0.08	0.08	0.15
pН	39	pH units	7.9	8.1	9.7	8.2

<u>Key</u>

N/S - Not Scheduled I/S - Insufficient Sample

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Soil Analysis

PAGE 3 OF 4

FESB/D5223 Walbrook London

Your Reference:- WAL050194

Your Order:- W0514

CAS Number: Sample Ref			819896 BH3	819897 BH3	819898 BH3	819899 BH3
Detname	Method	Units	35.65m	38.65m	41.65m	44.55m
Moisture @ 30°C*	33A	%	19	14	15	15
Stones %*	Q.P.5.4.I	%	0.4	0.46	0.93	0.05
Sulphate (Total) as SO3	45	%	0.15	0.18	0.37	0.26
pH	39	pH units	8.4	7.7	7.3	7

<u>Key</u>

N/S - Not Scheduled I/S - Insufficient Sample

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Soil Analysis

PAGE 4 OF 4

FESB/D5223

Walbrook London

Your Reference:- WAL050194

Your Order:- W0514

CAS Number: Sample Ref Detname	Method	Units	819900 BH3 47.60m	819901 BH3 49.10m
Moisture @ 30°C*	33A	%	15	14
Stones %*	Q.P.5.4.I	%	0.06	0.56
Sulphate (Total) as SO3	45	%	0.16	0.3
pH	39	pH units	8.3	7.7

<u>Key</u>

N/S - Not Scheduled I/S - Insufficient Sample

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

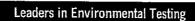
Soil Analysis

FESB/D5223

Walbrook London

Your Reference:- WAL050194

Your Order:- W0514


CAS Number			Limit	819902				
Sample Ref Detname	Method	Units	Of Detection	AQC	+3s	+2s	-2s	-3s
Sulphate (Total) as SO3	45	%	0.0200	0.18	0.2180	0.1980	0.1180	0.0980
pН	39	pH units	2.0000	8.0	8.5900	8.4600	7.9400	7.8100

ANALYSIS RESULTS PAGE 1 OF 2 PAGES

23 May 2006

Mr T Doublet
Fugro Limited
Fugro House
Hithercroft Road
Wallingford
Oxfordshire
OX10 9RB

Test Report: FESL/D5393

Dear Mr Doublet

Please find enclosed the results of the analysis carried out on the samples submitted from Walbrook London Site Investigation on 11 May 2006.

I trust you will find these satisfactory but should you have any queries please contact customer services.

Yours sincerely

P Woodbridge INORGANICS MANAGER

Determinations marked * in this certificate are not included in the UKAS accreditation schedule for our laboratory. Opinions and interpretations expressed herein, and marked #, are outside the scope of UKAS accreditation. Determinations marked \$ were subcontracted. Unless otherwise stated, Severn Trent was not responsible for sampling. Information about methods and performance characteristics of the determinations are available on request. Unless otherwise agreed, as received soils will be disposed of after 30 days; dried soils after 30 days and waters/leachates after 10 days from the issue of the final report. Soil analysis is cerried out on air-dried and ground test portion of the sample.

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Soil Analysis

PAGE 2 OF 2

FESL/D5393

Walbrook London Site Investigation Your Reference:- WAL050194

Your Order:- W0539

CAS Number: Sample Ref Detname	Method	Units	822965 AP5/12 2.30m	822966 AP8/9 1.00m	822967 AP11/5 1.00m	822968 OP3/2 0.75m
Stones %*	Q.P.5.4.I	%	26	39	41	31
Moisture @ 30°C*	33A	%	3.4	8.6	4	14
Sulphate (Total) as SO3	45	%	< 0.02	< 0.02	< 0.02	0.32
pН	39	pH units	9.3	8.9	7.9	10.1

Key

N/S - Not Scheduled I/S - Insufficient Sample

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Soil Analysis

FESL/D5393

Walbrook London Site Investigation Your Refererence:- WAL050194

Your Order:- W0539

CAS Number			Limit	822969				
Sample Ref			Of	022303				
Detname	Method	Units	Detection	AQC	+3s	+2s	-2s	-3s
Sulphate (Total) as SO3	45	%	0.0200	0.19	0.2180	0.1980	0.1180	0.0980
рН	39	pH units	2.0000	8.2	8.5900	8.4600	7.9400	7.8100

ANALYSIS RESULTS PAGE 1 OF 2 PAGES

14 June 2006

Fugro Engineering Services Limited (Southern)
Fugro House
Hithercroft Road
Wallingford
Oxfordshire
OX10 9RB

Test Report: FESB/D5553

#VALUE!

Please find enclosed the results of the analysis carried out on the samples submitted from Walbrook London Site Investigation on 15 May 2006.

I trust you will find these satisfactory but should you have any queries please contact customer services.

Yours sincerely

P Woodbridge INORGANICS MANAGER

Determinations marked * in this certificate are not included in the UKAS accreditation schedule for our laboratory. Opinions and interpretations expressed herein, and marked #, are outside the scope of UKAS accreditation. Determinations marked \$ were subcontracted. Unless otherwise stated, Severn Trent was not responsible for sampling. Information about methods and performance characteristics of the determinations are available on request. Unless otherwise agreed, as received soils will be disposed of after 30 days; dried soils after 30 days and waters/leachates after 10 days from the issue of the final report. Soil analysis is carried out on air-dried and ground test portion of the sample.

Soil Analysis

FESB/D5553

Walbrook London Site Investigation

Your Reference:- WAL050194

Your Order:- W0539

CAS Number:			823313	823314
Sample Ref			AP1/1/D	AQC
Detname	Method	Units	0.60m	Data
Moisture @ 30°C*	33A	%	3.9	N/S
Stones %*	Q.P.5.4.I	%	39	N/S
Sulphate (Total) as SO3	45	%	< 0.02	0.18
pH	39	pH units	9.1	8.1

MINERVA PLC WALBROOK, LONDON - SITE INVESTIGATION

APPENDIX D Contamination Test Results

STL Test Reports

FESB/D4746, FESB/D5026, FESB/D4491

ANALYSIS RESULTS PAGE 1 OF 3 PAGES

3 May 2006

Ms L Brocklesby
Fugro Engineering Services Limited (Southern)
Fugro House
Hithercroft Road
Wallingford
Oxfordshire
OX10 9RB

Test Report: FESB/D4746

Dear Ms Brocklesby

Please find enclosed the results of the analysis carried out on the samples submitted from Walbrook, London on 29 March 2006.

I trust you will find these satisfactory but should you have any queries please contact customer services.

Yours sincerely

Jason Rogers
LABORAORY MANAGER

Determinations marked * in this certificate are not included in the UKAS accreditation schedule for our laboratory. Opinions and interpretations expressed herein, and marked #, are outside the scope of UKAS accreditation. Determinations marked \$ were subcontracted. Unless otherwise stated, Severn Trent was not responsible for sampling. Information about methods and performance characteristics of the determinations are available on request. Unless otherwise agreed, as received soils will be disposed of after 30 days; dried soils after 30 days and waters/leachates after 10 days from the issue of the final report. Soil analysis is carried out on air-dried and ground test portion of the sample.

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Water Analysis

PAGE 2 OF 3

FESB/D4746 Walbrook, London Your Reference:- WAL050194 Your Order:- FRAMEWORK

CAS Number:			813881	813882
Sample Ref			AP1	AP8
Detname	Method	Units	1.50m	1.30m
Arsenic (Soluble)*	25C	μg/l	< 10	10
Cadmium (Soluble)	53F	μg/1	< 2.0	< 2.0
Calcium (Soluble)	53F	μg/l	93000	94000
Chromium (Soluble)	53F	μ g /l	< 10	< 10
Copper (Soluble)	53F	μg/l	24	15
Iron (Soluble)	53F	μg/l	< 10	14
Lead (Soluble)	53F	μg/l	< 50	< 50
Magnesium (Soluble)	53F	μg/I	34000	5200
Manganese (Soluble)	53F	μg/I	110	34
Mercury (Soluble)*	25C	μg/l	< 1.0	< 1.0
Nickel (Soluble)	53F	μg/I	< 20	< 20
Potassium (Soluble)	53F	μ g /l	79000	38000
Selenium (Soluble)*	25C	μg/l	< 2.0	< 2.0
Sodium (Soluble)	53F	μg/l	170000	92000
Zinc (Soluble)	53F	μg/l	40	22
Cyanide (Free)*	14A	mg/l	< 0.05	< 0.05
Cyanide (Total)*	14A	mg/l	< 0.05	< 0.05
Sulphate as SO3	60	g/l	0.2	0.17
Thiocyanate as CN	16	mg/l	0.1	< 0.10
Ammonia as N	60	mg/l	9.2	< 0.20
Chloride as Cl-	60	mg/l	82	64
Nitrate as N	60	mg/l	< 0.50	4.9
Nitrate as NO3	60	mg/l	< 2.0	22
Nitrite as N	60	mg/l	0.07	0.1
Sulphide as S	38A	mg/l	< 0.010	0.024
Total Org.Carbon (Filt)	41	mg/l	13	5.7
>> TPH SUITE <<				
TPH by GC (>C6 - C10)	318	μg/l	I/S	< 100
TPH by GC (>C10 - C20)	318	μ g/ l	I/S	< 100
TPH by GC (>C20 - C40)	318	μg/l	I/S	220
TPH by GC (>C6 - C40)	318	μg/l	I/S	220
>> BTEX SUITE <<			•	•
benzene*	BTEXW1	μg/1	< 10.00	< 10.00
toluene*	BTEXW1	μg/I	< 10.00	< 10.00
ethylbenzene*	BTEXW1	μg/I	< 10.00	< 10.00
mp-xylene*	BTEXW1	μg/1	< 10.00	< 10.00
o-xylene*	BTEXW1	μg/1	< 10.00	< 10.00
catechol*	PHOHBG2.4	μg/l	< 0.50	< 0.50

<u>Key</u>

N/S - Not Scheduled I/S - Insufficient Sample

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Water Analysis

PAGE 3 OF 3

FESB/D4746 Walbrook, London

Your Reference:- WAL050194 Your Order:- FRAMEWORK

CAS Number:			813881	813882
Sample Ref			AP1	AP8
Detname	Method	Units	1.50m	1.30m
phenol*	PHOHBG2.4	μg/l	1.3	< 0.50
cresols*	PHOHBG2.4	μg/l	17	< 0.50
xylenols*	PHOHBG2.4	μg/l	4	< 0.50
trimethylphenol*	PHOHBG2.4	μg/l	< 0.50	< 0.50
Total Phenol*	PHOHBG2.4	μg/l	21	< 2.50

<u>Key</u>

N/S - Not Scheduled I/S - Insufficient Sample

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Page 1 of 24

03/05/2006

Ms Lucy Brocklesby

Fugro Engineering Services Limited (Basingstoke)
Fugro House
Hithercroft Road
Wallingford
Oxfordshire
OX10 9RB

Test Report: FESB/D4746

Dear Ms Brocklesby

Please find enclosed the results of the analysis carried out on the samples submitted from Walbrook, London on 29/03/2006.

Uncertainty Of Measurement Data in accordance with ISO 17025 is available upon request.

I trust you will find these satisfactory but should you have any queries please contact customer services.

Yours sincerely

Jason Rogers

LABORATORY MANAGER

Determinations marked * in this certificate are not included in the UKAS accreditation schedule for our laboratory. Determinations marked M have met the requirements of the MCERTS performance standard. Opinions and interpretations expressed herein, and marked #, are outside the scope of UKAS accreditation. Determinations marked \$ were subcontracted. Unless otherwise stated, Severn Trent - Midlands was not responsible for sampling. Information about methods and performance characteristics of the determinations are available on request. Unless otherwise agreed, as received soils will be disposed of after 30 days and waters/leachates after 10 days from the issue of the final report.

Analysis carried out on air-dried and ground test portion of the sample, unless otherwise stated in the synopses of analytical methods. Air drying is carried out at not greater than 30°C. All results are reported on an air-dried basis.

Samples are not preserved on site, unless otherwise stated in the synopses of analytical methods.

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP5

Job:

FESB/D4746

Other ID:

1.60m

Sample No:

813871

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown clay with many I stones

Method	Determination	Result	Units	Date of analysis
30C	Antimony (Total)	3.3	mg/kg	01/04/2006
30/30C	^M Arsenic (Total)	31	mg/kg	03/04/2006
52	^M Barium (Total)	100	mg/kg	01/04/2006
52	^M Beryllium (Total)	1.2	mg/kg	01/04/2006
30	^M Cadmium (Total)	< 0.50	mg/kg	01/04/2006
30	^M Chromium (Total)	49	mg/kg	01/04/2006
30	^M Copper (Total)	73	mg/kg	01/04/2006
30	^M Lead (Total)	570	mg/kg	01/04/2006
52	^м Manganese (Total)	880	mg/kg	01/04/2006
30C	^M Mercury (Total)	0.22	mg/kg	01/04/2006
30	^M Nickel (Total)	72	mg/kg	01/04/2006
30C	[™] Selenium (Total)	0.70	mg/kg	01/04/2006
30	[™] Zinc (Total)	120	mg/kg	01/04/2006
Moisture	Moisture*	6.4	%	03/04/2006
Stones	Stones %*	35	%	03/04/2006
Comments				

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP5

Job:

FESB/D4746

Other ID:

2.30m

Sample No:

813872

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown sand with many stones

Method	Determination	Result	Units	Date of analysis
6	[™] Boron (Soluble)	0.36	mg/kg	04/04/2006
24	Chloride as CI*	2400	mg/kg	07/04/2006
14	[™] Cyanide (Total)	< 2.0	mg/kg	01/04/2006
47	[™] Sulphide as S	< 5.0	mg/kg	01/04/2006
	TOC by Ignition in Oxygen\$	1.5	%	24/04/2006
20A	Fluoride as F-*	< 0.50	mg/kg	04/04/2006
	>> TPH SUITE <<			29/03/2006
317	TPH by GC (>C6-C10)	< 50	mg/kg	03/04/2006
317	TPH by GC (>C10 - C20)	< 50	mg/kg	03/04/2006
317	TPH by GC (>C20-C40)	< 50	mg/kg	03/04/2006
317	[™] TPH by GC (>C6 - C40)	< 50	mg/kg	03/04/2006
	>> SVOC SUITE <<	•		29/03/2006
316	^M phenol	< 1.0	mg∕kg	04/04/2006
316	2-picoline	< 1.0	mg/kg	04/04/2006
316	analine	< 1.0	mg/kg	04/04/2006
SVOCS1	o-toluidine*	< 0.10	mg/kg	04/04/2006
316	bis(2-chloroethyl)ether	< 1.0	πg/kg	04/04/2006
316	2-chiorophenol	< 1.0	mg/kg	04/04/2006
316	1,3-dichlorobenzene	< 1.0	mg/kg	04/04/2006
316	benzyl alcohol	< 1.0	mg/kg	04/04/2006
316	^M 1,4-dichlorobenzene	< 1.0	mg/kg	04/04/2006
316	^M 1,2-dichlorobenzene	< 1.0	mg/kg	04/04/2006
316	bis(2-chloroisopropyl)ether	< 1.0	mg/kg	04/04/2006
316	n-nitroso-di-n-propylamine	< 1.0	mg/kg	04/04/2006
316	^M hexachloroethane	< 1.0	mg/kg	04/04/2006
316	^M 2-methylphenol	< 1.0	mg/kg	04/04/2006
316	^M nitrobenzene	< 1.0	mg/kg	04/04/2006
316	[™] 4-methylphenol	< 1.0	mg/kg	04/04/2006
316	[™] isophorone	< 1.0	mg/kg	04/04/2006
316	2,4-dimethylphenol	< 1.0	mg/kg	04/04/2006
316	acetophenone	< 1.0	mg/kg	04/04/2006
316	2-nitrophenol	< 1.0	mg/kg	04/04/2006
316	bis(2-chloroethoxy)methane	< 1.0	· mg/kg	04/04/2006
316	^M 2,4-dichlorophenol	< 1.0	mg/kg	04/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP5

Job:

FESB/D4746

Other ID:

2.30m

Sample No:

813872

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown sand with many stones

316			Units	Date of analysis
0.0	1,2,4-trichlorobenzene	< 1.0	mg/kg	04/04/2006
316	naphthalene	< 1.0	mg/kg	04/04/2006
316	[™] hexachlorobutadiene	< 1.0	mg/kg	04/04/2006
316	^M 4-chloro-3-methylphenol	< 1.0	mg/kg	04/04/2006
316	[™] 2-methylnaphthalene	< 1.0	mg/kg	04/04/2006
316	n-nitrosopiperidine	< 1.0	mg/kg	04/04/2006
316	2,4,6-trichlorophenol	< 1.0	mg/kg	04/04/2006
316	[™] 2,4,5-trichlorophenol	< 1.0	mg/kg	04/04/2006
316	[™] 2-chloronaphthalene	< 1.0	mg/kg	04/04/2006
316	^M dimethylphthalate	< 1.0	mg/kg	04/04/2006
316	^M 2,6-dinitrotoluene	< 1.0	mg/kg	04/04/2006
316	benzoic acid	< 1.0	mg/kg	04/04/2006
316	[™] acenaphthylene	< 1.0	mg/kg	04/04/2006
316	[™] acenaphthene	< 1.0	mg/kg	04/04/2006
316	^M 2,4-dinitrotoluene	< 1.0	mg/kg	04/04/2006
316	[™] diethylphthalate	< 1.0	mg/kg	04/04/2006
316	^M 4-nitrophenol	< 1.0	mg/kg	04/04/2006
316	[™] 4-chlorophenyl-phenylether	< 1.0	mg/kg	04/04/2006
316	[™] fluorene	< 1.0	mg/kg	04/04/2006
316	carbazole	< 1.0	mg/kg	04/04/2006
316	n-nitrosodiphenylamine	< 1.0	mg/kg	04/04/2006
316	^M 4-bromophenyl-phenylether	< 1.0	mg/kg	04/04/2006
316	4-chloroaniline	< 1.0	mg/kg	04/04/2006
316	[™] hexachlorobenzene	< 1.0	mg/kg	04/04/2006
316	[™] pentachlorophenol	< 1.0	mg/kg	04/04/2006
316	26-dichlorophenol	< 1.0	mg/kg	04/04/2006
316	[™] phenanthrene	< 1.0	mg/kg	04/04/2006
316	[™] anthracene	< 1.0	mg/kg	04/04/2006
316	^M di-n-butylphthalate	< 1.0	mg/kg	04/04/2006
316	[™] fluoranthene	< 1.0	mg/kg	04/04/2006
316	n-nitrosodibutylamine	< 1.0	mg/kg	04/04/2006
316	[™] pyrene	< 1.0	mg/kg	04/04/2006
316	[™] butyibenzylphthalate	< 1.0	mg/kg	04/04/2006
316	[™] benzo(a)anthracene	< 1.0	mg/kg	04/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP5

Job:

FESB/D4746

Other ID:

2.30m

Sample No:

813872

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown sand with many stones

Method	Determination	Result	Units	Date of analysis
316	^M chrysene	< 1.0	mg/kg	04/04/2006
316	1245-tetrachlorobenzene	< 1.0	mg/kg	04/04/2006
316	^M bis(2-ethylhexyl)phthalate	< 1.0	mg/kg	04/04/2006
316	^M di-n-octylphthalate	< 1.0	mg/kg	04/04/2006
316	hexachlorocyclopentadien	< 1.0	mg/kg	04/04/2006
316	benzo(b)fluoranthene	< 1.0	mg/kg	04/04/2006
316	benzo(k)fluoranthene	< 1.0	mg/kg	04/04/2006
316	[™] benzo(a)pyrene	< 1.0	mg/kg	04/04/2006
316	indeno(123-cd)pyrene	< 1.0	mg/kg	04/04/2006
316	dibenzo(ah)anthracene	< 1.0	mg/kg	04/04/2006
316	benzo(ghi)perylene	< 1.0	mg/kg	04/04/2006
316	2-nitroaniline	< 1.0	mg/kg	04/04/2006
316	3-nitroanitine	< 1.0	mg/kg	04/04/2006
316	[™] Dibenzofuran	< 1.0	mg/kg	04/04/2006
316	pentachlorobenzene	< 1.0	mg/kg	04/04/2006
316	12-diphenylhydrazine	< 1.0	mg/kg	04/04/2006
316	2-fluorophenol	100	%	04/04/2006
316	2-naphthylamine	< 1.0	mg/kg	04/04/2006
316	phenol-d6	79	%	04/04/2006
316	nitrobenzene-d5	98	%	04/04/2006
316	2346-tetrachlorophenol	< 1.0	mg/kg	04/04/2006
316	2-fluorobiphenyl	100	%	04/04/2006
316	2,4,6-tribromophenol	53	%	04/04/2006
316	terphenyl-d14	90	%	04/04/2006
316	4-nitroaniline	< 1.0	mg/kg	04/04/2006
316	2-methyl-46-dinitropheno	< 1.0	mg/kg	04/04/2006
316	diphenylamine	< 1.0	mg/kg	04/04/2006
316	phenacetin	< 1.0	mg/kg	04/04/2006
316	4-aminobiphenyl	< 1.0	mg/kg	04/04/2006
316	benzidine	< 1.0	mg/kg	04/04/2006
316	dimethylaminoazobenzene	< 1.0	mg/kg	04/04/2006
316	n-nitrosodimethylamine	< 1.0	mg/kg	04/04/2006
316	33-dichlorobenzidine	< 1.0	mg/kg	04/04/2006
316	7,12-dimethylbenz(a)anth	< 1.0	mg/kg	04/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook, London

Sample Type SOIL

Sample ID:

AP5

Job:

FESB/D4746

Other ID:

2.30m

Sample No:

813872

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown sand with many stones

Method	Determination	Result	Units	Date of analysis
316	3-methylcholanthrene	< 1.0	mg/kg	04/04/2006
	M >> BTEX SUITE ≪	•		12/04/2006
	M >> VOC'S SUITE ≪	•		29/03/2006
327	^M 11-dichloroethene	< 0.10	mg/kg	05/04/2006
327	^M dichloromethane	< 0.10	mg/kg	05/04/2006
327	^M trans-12-dichloroethene	< 0.10	mg/kg	05/04/2006
327	^M 11-dichloroethane	< 0.10	mg/kg	05/04/2006
327	^M 2,2-dichloropropane	< 0.10	mg/kg	05/04/2006
327	^M cis-12-dichloroethene	< 0.10	mg/kg	05/04/2006
327	^M bromochloromethane	< 0.10	mg/kg	05/04/2006
327	^M chloroform	< 0.10	mg/kg	05/04/2006
327	[™] 111-trichloroethane	< 0.10	mg/kg	05/04/2006
327	^M carbon tetrachloride	< 0.10	mg/kg	05/04/2006
327	^M 1,1-dichloropropene	< 0.10	mg/kg	05/04/2006
327	^M benzene	< 0.10	mg/kg	05/04/2006
327	^M 12-dichloroethane	< 0.10	mg/kg	05/04/2006
327	[™] trichloroethylene	< 0.10	mg/kg	05/04/2006
327	^M 12-dichloropropane	< 0.10	mg/kg	05/04/2006
327	^M dibromomethane	< 0.10	mg/kg	05/04/2006
327	^M bromodichloromethane	< 0.10	mg/kg	05/04/2006
327	^M trans-13-dichloropropene	< 0.10	mg/kg	05/04/2006
327	^M toluene	< 0.10	mg/kg	05/04/2006
327	^M cis-13-dichloropropene	< 0.10	mg/kg	05/04/2006
327	^M 112-trichloroethane	< 0.10	mg/kg	05/04/2006
327	^M tetrachloroethylene	< 0.10	mg/kg	05/04/2006
327	[™] 13-dichloropropane	< 0.10	mg/kg	05/04/2006
327	^M dibromochloromethane	< 0.10	mg/kg	05/04/2006
327	[™] 12-dibromoethane	< 0.10	mg/kg	05/04/2006
327	[™] chlorobenzene	< 0.10	mg/kg	05/04/2006
327	M 1112-tetrachloroethane	< 0.10	mg/kg	05/04/2006
327	^M ethylbenzene	< 0.10	mg/kg	05/04/2006
327	[™] mp-xylene	< 0.10	mg/kg	05/04/2006
327	^M o-xylene	< 0.10	mg/kg	05/04/2006
327	^M styrene	< 0.10	mg/kg	05/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP5

Job:

FESB/D4746

Other ID:

2.30m

Sample No:

813872

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown sand with many stones

Method	Determination	Result	Units	Date of analysis
327	^M bromoform	< 0.10	mg/kg	05/04/2006
327	[™] isopropylbenzene	< 0.10	mg/kg	05/04/2006
327	M bromobenzene	< 0.10	mg/kg	05/04/2006
327	M 123-trichloropropane	< 0.10	mg/kg	05/04/2006
327	^M 1122-tetrachloroethane	< 0.10	mg/kg	05/04/2006
327	^M n-propy!benzene	< 0.10	mg/kg	05/04/2006
327	2-chlorotoluene	< 0.10	mg/kg	05/04/2006
327	[™] 4-chlorotoluene	< 0.10	mg/kg	05/04/2006
327	135-trimethylbenzene	< 0.10	mg/kg	05/04/2006
327	tert-butylbenzene	< 0.10	mg/kg	05/04/2006
327	[™] sec-butylbenzene	< 0.10	mg/kg	05/04/2006
327	^M 13-dichlorobenzene	< 0.10	mg/kg	05/04/2006
327	^M 14-dichlorobenzene	< 0.10	mg/kg	05/04/2006
327	^M p-isopropyltoluene	< 0.10	mg/kg	05/04/2006
327	[™] 12-dichlorobenzene	< 0.10	mg/kg	05/04/2006
327	[™] n-butylbenzene	< 0.10	mg/kg	05/04/2006
327	12-dibromo3chloropropane	< 0.10	mg/kg	05/04/2006
327	135-trichlorobenzene	< 0.10	mg/kg	05/04/2006
327	124-trichlorobenzene	< 0.10	mg/kg	05/04/2006
327	124-trimethylbenzene	< 0.10	mg/kg	05/04/2006
327	[™] hexachlorobutadiene	< 0.10	mg/kg	05/04/2006
327	123-trichlorobenzene	< 0.10	mg/kg	05/04/2006
327	vinyl chloride	< 0.10	mg/kg	05/04/2006
322	^M Total Phenol	< 0.50	mg/kg	04/04/2006
70	Asbestos Identification	ND		12/04/2006
70	Description of Sample*	SOIL		12/04/2006
Moisture	Moisture*	2.7	%	03/04/2006
Stones	Stones %*	30	%	03/04/2006
Comments				

Commonts

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook, London

Sample Type SOIL

Sample ID:

AP11

Job:

FESB/D4746

Other ID:

0.50m

Sample No:

813873

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown loam with many stones

30C Antimony (Total) 2.4 mg/kg 01/04/2006 30/30C M Arsenic (Total) 19 mg/kg 03/04/2006 52 M Barium (Total) 90 mg/kg 01/04/2006 52 M Beryllium (Total) 0.70 mg/kg 01/04/2006 6 M Boron (Soluble) 1.2 mg/kg 04/04/2008 30 M Cadmium (Total) 21 mg/kg 01/04/2006 30 M Copper (Total) 3500 mg/kg 01/04/2006 30 M Copper (Total) 3500 mg/kg 01/04/2006 30 M Copper (Total) 370 mg/kg 01/04/2006 30 M Lead (Total) 700 mg/kg 01/04/2006 52 M Manganese (Total) 3.7 mg/kg 01/04/2006 30C M Mercury (Total) 3.7 mg/kg 01/04/2006 30 M Sickel (Total) 40.30 mg/kg 01/04/2006 30 M Zinc (Total) 50 mg/kg 01/04/2006	Method	Determination	Result	Units	Date of analysis
52 M Barium (Total) 90 mg/kg 01/04/2008 52 M Beryllium (Total) 0.70 mg/kg 01/04/2008 6 M Boron (Soluble) 1.2 mg/kg 04/04/2008 30 M Cadmium (Total) 5.6 mg/kg 01/04/2008 30 M Chromium (Total) 21 mg/kg 01/04/2008 30 M Copper (Total) 3500 mg/kg 01/04/2006 30 M Copper (Total) 370 mg/kg 01/04/2006 30 M Lead (Total) 700 mg/kg 01/04/2006 52 M Manganese (Total) 370 mg/kg 01/04/2006 30C M Mercury (Total) 3.7 mg/kg 01/04/2006 30 M Nickel (Total) 16 mg/kg 01/04/2006 30C M Selenium (Total) < 0.30	30C	Antimony (Total)	2.4	mg/kg	01/04/2006
52 M Beryllium (Total) 0.70 mg/kg 01/04/2006 6 M Boron (Soluble) 1.2 mg/kg 04/04/2008 30 M Cadmium (Total) 5.6 mg/kg 01/04/2006 30 M Chromium (Total) 21 mg/kg 01/04/2006 30 M Copper (Total) 3500 mg/kg 01/04/2006 30 M Copper (Total) 370 mg/kg 01/04/2006 30 M Lead (Total) 700 mg/kg 01/04/2006 30 M Manganese (Total) 370 mg/kg 01/04/2006 30C M Mercury (Total) 3.7 mg/kg 01/04/2006 30C M Selenium (Total) < 0.30	30/30C	^M Arsenic (Total)	19	mg/kg	03/04/2006
6 M Boron (Soluble) 1.2 mg/kg 0.4/04/2006 30 M Cadmium (Total) 5.6 mg/kg 0.1/04/2006 30 M Chromium (Total) 21 mg/kg 0.1/04/2006 30 M Copper (Total) 3500 mg/kg 0.1/04/2006 30 M Lead (Total) 700 mg/kg 0.1/04/2006 52 M Manganese (Total) 370 mg/kg 0.1/04/2006 30C M Mercury (Total) 3.7 mg/kg 0.1/04/2006 30 M Nickel (Total) 16 mg/kg 0.1/04/2006 30C M Selenium (Total) < 0.30	52	^M Barium (Total)	90	mg/kg	01/04/2006
Solution	52	^M Beryllium (Total)	0.70	mg/kg	01/04/2006
Marchenium (Total) 21 mg/kg 01/04/2008	6	^M Boron (Solubie)	1.2	mg/kg	04/04/2006
M Copper (Total) 3500 mg/kg 01/04/2006	30	M Cadmium (Total)	5.6	mg/kg	01/04/2006
30 M Lead (Total) 700 mg/kg 01/04/2006 52 M Manganese (Total) 370 mg/kg 01/04/2006 30C M Mercury (Total) 3.7 mg/kg 01/04/2006 30 M Nickel (Total) 16 mg/kg 01/04/2006 30C M Selenium (Total) < 0.30	30	^M Chromium (Total)	21	mg/kg	01/04/2006
52 M Manganese (Total) 370 mg/kg 01/04/2008 30C M Mercury (Total) 3.7 mg/kg 01/04/2008 30 M Nickel (Total) 16 mg/kg 01/04/2008 30C M Selenium (Total) < 0.30	30	^M Copper (Total)	3500	mg/kg	01/04/2006
Marcury (Total) 3.7 mg/kg 01/04/2006	30	^M Lead (Total)	700	mg/kg	01/04/2006
M Nickel (Total) 16 mg/kg 01/04/2006	52	^M Manganese (Total)	370	mg/kg	01/04/2006
30C M Selenium (Total) < 0.30	30C	^M Mercury (Total)	3.7	mg/kg	01/04/2006
Solution Solution	30	^M Nickel (Total)	16	mg/kg	01/04/2006
24 Chloride as Ci* 350 mg/kg 07/04/2006 14 M Cyanide (Total) < 2.0 mg/kg 01/04/2006 47 M Sulphide as S < 5.0 mg/kg 01/04/2006 20A Fluoride as F-* < 0.50 mg/kg 04/04/2006 20A Fluoride as F-* < 0.50 mg/kg 04/04/2006 217 TPH by GC (>C6-C10) < 50 mg/kg 03/04/2006 218 TPH by GC (>C6-C10) < 50 mg/kg 03/04/2006 219 TPH by GC (>C6-C10) < 50 mg/kg 03/04/2006 210 TPH by GC (>C6-C40) < 50 mg/kg 03/04/2006 211 TPH by GC (>C6-C40) < 50 mg/kg 03/04/2006 211 M TPH by GC (>C6-C40) < 50 mg/kg 03/04/2006 212 M TPH by GC (>C6-C40) < 50 mg/kg 03/04/2006 213 M TPH by GC (>C6-C40) < 50 mg/kg 03/04/2006 216 A phenol < 1.0 mg/kg 04/04/2006 217 M phenol < 1.0 mg/kg 04/04/2006 218 A analine < 1.0 mg/kg 04/04/2006 219 O4/04/2006 210 D4/04/2006 211 D5/04/04/2006 212 C-chloroethyl)ether < 1.0 mg/kg 04/04/2006 213 D5/04/2006 214 D5/04/2006 215 D5/04/2006 216 D5/04/2006 217 D5/04/2006 218 D5/04/2006 219 D5/04/2006 210 mg/kg 04/04/2006 210 mg/kg 04/04/2006 211 D5/04/2006 212 C-chlorophenol < 1.0 mg/kg 04/04/2006 213 D5/04/2006 214 D5/04/2006 215 D5/04/2006 216 D5/04/2006 217 D5/04/2006 218 D5/04/2006 219 D5/04/2006 210 mg/kg 04/04/2006 210 mg/kg 04/04/2006 210 mg/kg 04/04/2006 211 D5/04/2006 212 D5/04/2006 213 D5/04/2006 214 D5/04/2006 215 D5/04/2006 216 D5/04/2006 217 D5/04/2006 217 D5/04/2006 218 D5/04/2006 219 D5/04/2006 210 mg/kg 04/04/2006 210 mg/kg 04/04/2006 210 mg/kg 04/04/2006 210 mg/kg 04/04/2006 210 mg/kg 04/04/2006 210 mg/kg 04/04/2006 210 mg/kg 04/04/2006 210 mg/kg 04/04/2006 210 mg/kg 04/04/2006 210 mg/kg 04/04/2006 210 mg/kg 04/04/2006 210 mg/kg 04/04/2006 210 mg/kg 04/04/2006 210 mg/kg 04/04/2006	30C	^M Selenium (Total)	< 0.30	mg/kg	01/04/2006
14 M Cyanide (Total) < 2.0	30	^M Zinc (Total)	5600	mg/kg	03/04/2006
47	24	Chloride as Ci*	350	mg/kg	07/04/2006
Pluoride as F-* < 0.50 mg/kg 04/04/2006	14	^M Cyanide (Total)	< 2.0	mg/kg	01/04/2006
>> TPH SUITE <<	47	^M Sulphide as S	< 5.0	mg/kg	01/04/2006
317 TPH by GC (>C6-C10) < 50	20A	Fluoride as F-*	< 0.50	mg/kg	04/04/2006
317 TPH by GC (>C10 - C20) < 50		>> TPH SUITE <<			29/03/2006
317 TPH by GC (>C20-C40)	317	TPH by GC (>C6-C10)	< 50	mg/kg	03/04/2006
317 M TPH by GC (>C6 - C40)	317	TPH by GC (>C10 - C20)	< 50	mg/kg	03/04/2006
>> SVOC SUITE . 29/03/2006 316 M phenoi < 1.0	317	TPH by GC (>C20-C40)	< 50	mg/kg	03/04/2006
316 M phenol < 1.0 mg/kg 04/04/2006 316 2-picoline < 1.0	317	^M TPH by GC (>C6 - C40)	< 50	mg/kg	03/04/2006
316		>> SVOC SUITE <<	•		29/03/2006
316 analine < 1.0 mg/kg 04/04/2006 SVOCS1 o-toluidine* < 0.10 mg/kg 04/04/2006 316 bis(2-chloroethyl)ether < 1.0 mg/kg 04/04/2006 316 2-chlorophenol < 1.0 mg/kg 04/04/2006 316 1,3-dichlorobenzene < 1.0 mg/kg 04/04/2006 316 benzyl alcohol < 1.0 mg/kg 04/04/2006 316 mg/kg 04/04/2006	316	^M phenoi	< 1.0	mg/kg	04/04/2006
SVOCS1 o-toluidine* < 0.10 mg/kg 04/04/2006 316 bis(2-chloroethyl)ether < 1.0	316	2-picoline	< 1.0	mg/kg	04/04/2006
316 bis(2-chloroethyl)ether < 1.0 mg/kg 04/04/2006 316 2-chlorophenol < 1.0	316	analine	< 1.0	mg/kg	04/04/2006
316 2-chlorophenol < 1.0	SVOCS1	o-toluidine*	< 0.10	mg/kg	04/04/2006
316	316	bis(2-chloroethyl)ether	< 1.0	mg/kg	04/04/2006
316 benzyl alcohol < 1.0 mg/kg 04/04/2006 316 M 1,4-dichlorobenzene < 1.0 mg/kg 04/04/2006	316	2-chlorophenol	< 1.0	mg/kg	04/04/2006
316 M 1,4-dichlorobenzene < 1.0 mg/kg 04/04/2006	316	1,3-dichlorobenzene	< 1.0	mg/kg	04/04/2006
,, a.e., e.e., e.e., e.e., e.e., e.e., e.e., e.e., e.e., e.e., e.e., e.e., e.e., e.e., e.e., e.e., e.e., e.e.,	316	benzyl alcohol	< 1.0	mg/kg	04/04/2006
316 M 1,2-dichlorobenzene < 1.0 mg/kg 04/04/2006	316	^M 1,4-dichlorobenzene	< 1.0	mg/kg	04/04/2006
	316	^M 1,2-dichlorobenzene	< 1.0	mg/kg	04/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Page 9 of 24

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP11

Job:

FESB/D4746

Other ID:

0.50m

Sample No:

813873

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown loam with many stones

Method	Determination	Result	Units	Date of analysis
316	bis(2-chloroisopropyl)ether	< 1.0	mg/kg	04/04/2006
316	n-nitroso-di-n-propylamine	< 1.0	mg/kg	04/04/2006
316	[™] hexachloroethane	< 1.0	mg/kg	04/04/2006
316	^M 2-methylphenol	< 1.0	лg/kg	04/04/2006
316	^M nitrobenzene	< 1.0	mg/kg	04/04/2006
316	[™] 4-methylphenol	< 1.0	mg/kg	04/04/2006
316	[™] isophorone	< 1.0	mg/kg	04/04/2006
316	2,4-dimethylphenol	< 1.0	mg/kg	04/04/2006
316	acetophenone	< 1.0	mg/kg	04/04/2006
316	2-nitrophenol	< 1.0	mg/kg	04/04/2006
316	bis(2-chloroethoxy)methane	< 1.0	mg/kg	04/04/2006
316	[™] 2,4-dichlorophenol	< 1.0	mg/kg	04/04/2006
316	1,2,4-trichlorobenzene.	< 1.0	mg/kg	04/04/2006
316	naphthalene	< 1.0	mg/kg	04/04/2006
316	^M hexachlorobutadiene	< 1.0	mg/kg	04/04/2006
316	^M 4-chloro-3-methylphenol	< 1.0	mg/kg	04/04/2006
316	^M 2-methylnaphthalene	< 1.0	mg/kg	04/04/2006
316	n-nitrosopiperidine	< 1.0	mg/kg	04/04/2006
316	2,4,6-trichlorophenol	< 1.0	mg/kg	04/04/2006
316	^M 2,4,5-trichlorophenol	< 1.0	mg/kg	04/04/2006
316	^M 2-chloronaphthalene	< 1.0	mg/kg	04/04/2006
316	^M dimethylphthalate	< 1.0	mg/kg	04/04/2006
316	^M 2,6-dinitrotoluene	< 1.0	mg/kg	04/04/2006
316	benzoic acid	< 1.0	mg/kg	04/04/2006
316	^M acenaphthylene	< 1.0	mg/kg	04/04/2006
316	^M acenaphthene	< 1.0	mg/kg	04/04/2006
316	^M 2,4-dinitrotoluene	< 1.0	mg/kg	04/04/2006
316	^M diethylphthalate	< 1.0	mg/kg	04/04/2006
316	^M 4-nitrophenol	< 1.0	mg/kg	04/04/2006
316	^M 4-chlorophenyl-phenylether	< 1.0	mg/kg	04/04/2006
316	^M fluorene	< 1.0	mg/kg	04/04/2006
316	carbazole	< 1.0	mg/kg	04/04/2006
316	n-nitrosodiphenylamine	< 1.0	mg/kg	04/04/2006
316	^M 4-bromophenyl-phenylether	< 1.0	mg/kg	04/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom Tel +44 (0)24 7658 4800 Fax +44 (0)24 7658 4848 info@stl-ltd.com

Severn Trent Laboratories Limited.
Registered in England & Wales Registration No. 2148934 Registered Office: 2297 Coventry Road, Birmingham B26 3PU

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP11

Job:

FE\$B/D4746

Other ID:

0.50m

Sample No:

813873

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown loam with many stones

Method	Determination	Result	Units	Date of analysis
316	4-chloroaniline	< 1.0	mg/kg	04/04/2006
316	^M hexachlorobenzene	< 1.0	mg/kg	04/04/2006
316	^M pentachlorophenol	< 1.0	mg/kg	04/04/2006
316	26-dichlorophenol	< 1.0	mg/kg	04/04/2006
316	[™] phenanthrene	< 1.0	mg/kg	04/04/2006
316	[™] anthracene	< 1.0	mg/kg	04/04/2006
316	^M di-n-butylphthalate	< 1.0	mg/kg	04/04/2006
316	^M fluoranthene	< 1.0	mg/kg	04/04/2006
316	n-nitrosodibutylamine	< 1.0	mg/kg	04/04/2006
316	[™] pyrene	< 1.0	mg/kg	04/04/2006
316	^M butylbenzylphthalate	< 1.0	mg/kg	04/04/2006
316	M benzo(a)anthracene	< 1.0	mg/kg	04/04/2006
316	^M chrysene	< 1.0	mg/kg	04/04/2006
316	1245-tetrachlorobenzene	< 1.0	mg/kg	04/04/2006
316	^M bis(2-ethylhexyl)phthalate	< 1.0	mg/kg	04/04/2006
316	^M dì-n-octylphthalate	< 1.0	mg/kg	04/04/2006
316	hexachlorocyclopentadien	< 1.0	mg/kg	04/04/2006
316	benzo(b)fluoranthene	< 1.0	mg/kg	04/04/2006
316	benzo(k)fluoranthene	< 1.0	mg/kg	04/04/2006
316	[™] benzo(a)pyrene	< 1.0	mg/kg	04/04/2006
316	indeno(123-cd)pyrene	< 1.0	mg/kg	04/04/2006
316	dibenzo(ah)anthracene	< 1.0	mg/kg	04/04/2006
316	benzo(ghi)perylene	< 1.0	mg/kg	04/04/2006
316	2-nitroaniline	< 1.0	mg/kg	04/04/2006
316	3-nitroaniline	< 1.0	mg/kg	04/04/2006
316	^M Dibenzofuran	< 1.0	mg/kg	04/04/2006
316	pentachlorobenzene	< 1.0	mg/kg	04/04/2006
316	12-diphenylhydrazine	< 1.0	mg/kg	04/04/2006
316	2-fluorophenol	100	%	04/04/2006
316	2-naphthylamine	< 1.0	mg/kg	04/04/2006
316	phenol-d6	71	%	04/04/2006
316	nitrobenzene-d5	100	%	04/04/2006
316	2346-tetrachlorophenol	< 1.0	mg/kg	04/04/2006
316	2-fluorobiphenyl	110	%	04/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Severn Trent Laboratories Limited.
Registered in England & Wales Registration No. 2148934 Registered Office: 2297 Coventry Road, Birmingham B26 3PU

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP11

Job:

FESB/D4746

Other ID:

0.50m

Sample No: Your Order: 813873

FRAMEWORK

Your Ref: Received: WAL050194 29/03/2006

Description

Brown loam with many stones

Method	Determination	Result	Units	Date of analysis
316	2,4,6-tribromophenol	74	%	04/04/2006
316	terphenyl-d14	97	%	04/04/2006
316	4-nitroaniline	< 1.0	mg/kg	04/04/2006
316	2-methyl-46-dinitropheno	< 1.0	mg/kg	04/04/2006
316	diphenylamine	< 1.0	mg/kg	04/04/2006
316	phenacetin	< 1.0	mg/kg	04/04/2006
316	4-aminobiphenyl	< 1.0	mg/kg	04/04/2006
316	benzidine	< 1.0	mg/kg	04/04/2006
316	dimethylaminoazobenzene	< 1.0	mg/kg	04/04/2006
316	л-nitrosodimethylamine	< 1.0	mg/kg	04/04/2006
316	33-dichlorobenzidine	< 1.0	mg/kg	04/04/2006
316	7,12-dimethylbenz(a)anth	< 1.0	mg/kg	04/04/2006
316	3-methylcholanthrene	< 1.0	mg/kg	04/04/2006
	M >> BTEX SUITE <<	•		12/04/2006
	M >> VOC'S SUITE <<	•		29/03/2006
327	^M 11-dichloroethene	< 0.10	mg/kg	05/04/2006
327	[™] dichloromethane	< 0.10	mg/kg	05/04/2006
327	^M trans-12-dichloroethene	< 0.10	mg/kg	05/04/2006
327	^M 11-dichloroethane	< 0.10	mg/kg	05/04/2006
327	^M 2,2-dichloropropane	< 0.10	mg/kg	05/04/2006
327	^M cis-12-dich≀oroethene	< 0.10	mg/kg	05/04/2006
327	[™] bromochloromethane	< 0.10	mg/kg	05/04/2006
327	^M chloroform	< 0.10	mg/kg	05/04/2006
327	^M 111-trichloroethane	< 0.10	mg/kg	05/04/2006
327	^M carbon tetrachloride	< 0.10	mg/kg	05/04/2006
327	[™] 1,1-dichloropropene	< 0.10	mg/kg	05/04/2006
327	[™] benzene	< 0.10	mg/kg	05/04/2006
327	^M 12-dichloroethane	< 0.10	mg /kg	05/04/2006
327	^M trichloroethylene	< 0.10	m g /kg	05/04/2006
327	^M 12-dichloropropane	< 0.10	mg /kg	05/04/2006
327	^M dibromomethane	< 0.10	mg/kg	05/04/2006
327	^M bromodichloromethane	< 0.10	mg/kg	05/04/2006
327	^M trans-13-dichloropropene	< 0.10	mg/kg	05/04/2006
327	[™] toluene	< 0.10	mg/kg	05/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP11

Job:

FESB/D4746

Other ID:

0.50m

Sample No:

813873

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown loam with many stones

Method	Determination	Result	Units	Date of analysis
327	^M cis-13-dichloropropene	< 0.10	mg/kg	05/04/2006
327	^M 112-trichloroethane	< 0.10	mg/kg	05/04/2006
327	^M tetrachloroethylene	< 0.10	mg/kg	05/04/2006
327	^M 13-dichloropropane	< 0.10	mg/kg	05/04/2006
327	^M dibromochloromethane	< 0.10	mg/kg	05/04/2006
327	^M 12-dibromoethane	< 0.10	mg/kg	05/04/2006
327	^M chlorobenzene	< 0.10	mg/kg	05/04/2006
327	[™] 1112-tetrachloroethane	< 0.10	mg/kg	05/04/2006
327	[™] ethylbenzene	< 0.10	mg/kg	05/04/2006
327	[™] mp-xylene	< 0.10	mg/kg	05/04/2006
327	^M o-xylene	< 0.10	mg/kg	05/04/2006
327	[™] styrene	< 0.10	mg/kg	05/04/2006
327	^M bromoform	< 0.10	mg/kg	05/04/2006
327	[™] isopropylbenzene	< 0.10	mg/kg	05/04/2006
327	[™] bromobenzene	< 0.10	mg/kg	05/04/2006
327	[™] 123-trichloropropane	< 0.10	mg/kg	05/04/2006
327	^M 1122-tetrachloroethane	< 0.10	mg/kg	05/04/2006
327	^м n-propylbenzene	< 0.10	mg/kg	05/04/2006
327	2-chlorotoluene	< 0.10	mg/kg	05/04/2006
327	[™] 4-chlorotoluene	< 0.10	mg/kg	05/04/2006
327	135-trimethylbenzene	< 0.10	mg/kg	05/04/2006
327	tert-butylbenzene	< 0.10	mg/kg	05/04/2006
327	^M sec-butylbenzene	< 0.10	mg/kg	05/04/2006
327	^M 13-dichlorobenzene	< 0.10	mg/kg	05/04/2006
327	[™] 14-dichlorobenzene	< 0.10	mg/kg	05/04/2006
327	[™] p-isopropyitoluene	< 0.10	mg/kg	05/04/2006
327	^M 12-dichlorobenzene	< 0.10	mg/kg	05/04/2006
327	[™] n-butylbenzene	< 0.10	mg/kg	05/04/2006
327	12-dibromo3chloropropane	< 0.10	mg/kg	05/04/2006
327	135-trichlorobenzene	< 0.10	mg/kg	05/04/2006
327	124-trichlorobenzene	< 0.10	mg/kg	05/04/2006
327	124-trimethylbenzene	< 0.10	mg/kg	05/04/2006
327	[™] hexachlorobutadiene	< 0.10	mg/kg	05/04/2006
327	123-trichlorobenzene	< 0.10	mg/kg	05/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Page 13 of 24

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP11

Job:

FESB/D4746

Other ID:

0.50m

Sample No:

813873

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown loam with many stones

Method	Determination	Result	Units	Date of analysis
327	vinyl chloride	< 0.10	mg/kg	05/04/2006
322	^M Total Phenol	0.61	mg/kg	04/04/2006
70	Asbestos Identification	ND		12/04/2006
70	Description of Sample*	SOIL		12/04/2008
Moisture	Moisture*	11	%	03/04/2006
Stones	Stones %*	28	%	03/04/2006

Comments

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP1

Job:

FESB/D4746

Other ID:

1.00m

Sample No:

813874

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown clay with occasional stone

Method	Determination	Result	Units	Date of analysis
30C	Antimony (Total)	< 1.0	mg/kg	01/04/2006
30/30C	^M Arsenic (Total)	11	mg/kg	04/04/2006
52	^м Barium (Total)	100	mg/kg	01/04/2006
52	^M Beryllium (Total)	1.2	mg/kg	01/04/2006
6	^M Boron (Soluble)	1.4	mg/kg	04/04/2006
30	^M Cadmium (Total)	< 0.50	mg/kg	01/04/2006
30	^M Chromium (Total)	40	mg/kg	01/04/2006
30	^M Copper (Total)	140	mg/kg	01/04/2006
30	^M Lead (Total)	43	mg/kg	01/04/2006
52	^M Manganese (Total)	330	mg/kg	01/04/2006
30C	^M Mercury (Total)	0.28	mg/kg	01/04/2006
30	^M Nickel (Total)	54	mg/kg	01/04/2006
30C	^M Selenium (Total)	0.34	mg/kg	01/04/2006
30	[™] Zinc (Total)	240	mg/kg	01/04/2006
24	Chloride as CI*	1000	mg/kg	07/04/2006
14	^M Cyanide (Total)	< 2.0	mg/kg	01/04/2006
47	^M Sulphide as S	< 5.0	mg/kg	01/04/2006
20A	Fluoride as F-*	6.4	mg/kg	05/04/200 6
	>> TPH SUITE <<	•		29/03/2006
317	TPH by GC (>C6-C10)	< 50	mg/kg	03/04/2006
317	TPH by GC (>C10 - C20)	< 50	mg/kg	03/04/2006
317	TPH by GC (>C20-C40)	< 50	mg/kg	03/04/2006
317	^M TPH by GC (>C6 - C40)	< 50	mg/kg	03/04/2006
	>> SVOC SUITE <<			29/03/2006
316	^M phenol	< 1.0	mg/kg	04/04/2006
316	2-picoline	< 1.0	mg/kg	04/04/2006
316	analine	< 1.0	mg/kg	04/04/2006
SVOCS1	o-toluidine*	< 0.10	mg/kg	04/04/2006
316	bis(2-chloroethyl)ether	< 1.0	mg/kg	04/04/2006
316	2-chlorophenol	< 1.0	mg/kg	04/04/2006
316	1,3-dichlorobenzene	< 1.0	mg/kg	04/04/2006
316	benzyl alcohol	< 1.0	mg/kg	04/04/2006
316	[™] 1,4-dichlorobenzene	< 1.0	mg/kg	04/04/2006
316	^M 1,2-dichlorobenzene	< 1.0	mg/kg	04/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP1

Job:

FESB/D4746

Other ID:

1.00m

Sample No:

813874

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown clay with occasional stone

Method	Determination	Result	Units	Date of analysis
316	bis(2-chloroisopropyl)ether		mg/kg	04/04/2006
316	n-nitroso-di-n-propylamine	< 1.0	mg/kg	04/04/2006
316	^M hexachloroethane	< 1.0	mg/kg	04/04/2006
316	[™] 2-methylphenol	< 1.0	mg/kg	04/04/2006
316	^M nitrobenzene	< 1.0	mg/kg	04/04/2006
316	[™] 4-methylphenol	< 1.0	mg/kg	04/04/2006
316	^M isophorone	< 1.0	mg/kg	04/04/2006
316	2,4-dimethylphenol	< 1.0	mg/kg	04/04/2006
316	acetophenone	< 1.0	mg/kg	04/04/2006
316	2-nitrophenol	< 1.0	mg/kg	04/04/2006
316	bis(2-chloroethoxy)methane	< 1.0	mg/kg	04/04/2006
316	^M 2,4-dichlorophenol	< 1.0	mg/kg	04/04/2006
316	1,2,4-trichlorobenzene	< 1.0	mg/kg	04/04/2006
316	naphthalene	< 1.0	mg/kg	04/04/2006
316	^M hexachlorobutadiene	< 1.0	mg/kg	04/04/2006
316	^M 4-chloro-3-methylphenol	< 1.0	mg/kg	04/04/2006
316	^M 2-methylnaphthalene	< 1.0	mg/kg	04/04/2006
316	n-nitrosopiperidine	< 1.0	mg/kg	04/04/2006
316	2,4,6-trichlorophenol	< 1.0	mg/kg	04/04/2006
316	^M 2,4,5-trichlorophenol	< 1.0	mg/kg	04/04/2006
316	^M 2-chloronaphthalene	< 1.0	mg/kg	04/04/2006
316	^M dimethylphthalate	< 1.0	mg/kg	04/04/2006
316	^M 2,6-dinitrotoluene	< 1.0	mg/kg	04/04/2006
316	benzoic acid	< 1.0	mg/kg	04/04/2006
316	^M acenaphthylene	< 1.0	mg/kg	04/04/2006
316	^M acenaphthene	< 1.0	mg/kg	04/04/2006
316	^M 2,4-dinitrotoluene	< 1.0	mg/kg	04/04/2006
316	^M diethylphthalate	< 1.0	mg/kg	04/04/2006
316	^M 4-nitrophenol	< 1.0	mg/kg	04/04/2006
316	^M 4-chlorophenyl-phenylether	< 1.0	mg/kg	04/04/2006
316	^M fluorene	< 1.0	mg/kg	04/04/2006
316	carbazole	< 1.0	mg/kg	04/04/2006
316	n-nitrosodiphenylamine	< 1.0	mg/kg	04/04/2006
316	^M 4-bromophenyl-phenylether	< 1.0	mg/kg	04/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP1

Job:

FESB/D4746

Other ID:

1.00m

Sample No:

813874

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown clay with occasional stone

Method	Determination	Result	Units	Date of analysis
316	4-chloroaniline	< 1.0	mg/kg	04/04/2006
316	^M hexachlorobenzene	< 1.0	mg/kg	04/04/2006
316	^M pentachlorophenol	< 1.0	mg/kg	04/04/2006
316	26-dichlorophenol	< 1.0	mg/kg	04/04/2006
316	^м pheлалthrene	< 1.0	mg/kg	04/04/2006
316	[™] anthracene	< 1.0	mg/kg	04/04/2006
316	^M di-n-butylphthalate	< 1.0	mg/kg	04/04/2006
316	^M fluoranthene	< 1.0	mg/kg	04/04/2006
316	n-nitrosodibutylamine	< 1.0	mg/kg	04/04/2006
316	[™] pyrene	< 1.0	mg/kg	04/04/2006
316	^M butylbenzylphthalate	< 1.0	mg/kg	04/04/2006
316	^M benzo(a)anthracene	< 1.0	mg/kg	04/04/2006
316	[™] chrysene	< 1.0	mg/kg	04/04/2006
316	1245-tetrachlorobenzene	< 1.0	mg/kg	04/04/2006
316	[™] bis(2-ethylhexyl)phthalate	< 1.0	mg/kg	04/04/2006
316	^M di-n-octylphthalate	< 1.0	mg/kg	04/04/2006
316	hexachlorocyclopentadien	< 1.0	mg/kg	04/04/2006
316	benzo(b)fluoranthene	< 1.0	mg/kg	04/04/2006
316	benzo(k)fluoranthene	< 1.0	mg/kg	04/04/2006
316 -	[™] benzo(a)pyrene	< 1.0	mg/kg	04/04/2006
316	indeno(123-cd)pyrene	< 1.0	mg/kg	04/04/2006
316	dibenzo(ah)anthracene	< 1.0	mg/kg	04/04/2006
316	benzo(ghi)perylene	< 1.0	mg/kg	04/04/2006
316	2-nitroaniline	< 1.0	mg/kg	04/04/2006
316	3-nitroaniline	< 1.0	mg/kg	04/04/2006
316	^M Dibenzofuran	< 1.0	mg/kg	04/04/2006
316	pentachlorobenzene	< 1.0	mg/kg	04/04/2006
316	12-diphenylhydrazine	< 1.0	mg/kg	04/04/2006
316	2-fluorophenol	77	%	04/04/2006
316	2-naphthylamine	< 1.0	mg/kg	04/04/2006
316	phenol-d6	60	%	04/04/2006
316	nitrobenzene-d5	79	%	04/04/2006
316	2346-tetrachlorophenol	< 1.0	mg/kg	04/04/2006
316	2-fluorobiphenyl	77	%	04/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP1

Job:

FESB/D4746

Other ID:

1.00m

Sample No:

813874

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown clay with occasional stone

Method	Determination	Result	Units	Date of analysis
316	2,4,6-tribromophenol	65	%	04/04/2006
316	terphenyl-d14	74	%	04/04/2006
316	4-nitroaniline	< 1.0	mg/kg	04/04/2006
316	2-methyl-46-dinitropheno	< 1.0	mg/kg	04/04/2006
316	diphenylamine	< 1.0	mg/kg	04/04/2006
316	phenacetin	< 1.0	mg/kg	04/04/2006
316	4-aminobiphenyl	< 1.0	mg/kg	04/04/2006
316	benzidine	< 1.0	mg/kg	04/04/2006
316	dimethylaminoazobenzene	< 1.0	mg/kg	04/04/2006
316	n-nitrosodimethylamine	< 1.0	mg/kg	04/04/2006
316	33-dichlorobenzidine	< 1.0	mg/kg	04/04/2006
316	7,12-dimethylbenz(a)anth	< 1.0	mg/kg	04/04/2006
316	3-methylcholanthrene	< 1.0	mg/kg	04/04/2006
	M >> BTEX SUITE <<			12/04/2006
	M >> VOC'S SUITE <<			29/03/2006
327	^M 11-dichloroethene	< 0.10	mg/kg	05/04/2006
327	^M dichloromethane	< 0.10	mg/kg	05/04/2006
327	^M trans-12-dichloroethene	< 0.10	mg/kg	05/04/2006
327	^M 11-dichloroethane	< 0.10	mg/kg	05/04/2006
327	^M 2,2-dichloropropane	< 0.10	mg/kg	05/04/2006
327	^M cis-12-dichloroethene	< 0.10	mg/kg	05/04/2006
327	^M bromochloromethane	< 0.10	mg/kg	05/04/2006
327	^M chloroform	< 0.10	mg/kg	05/04/2006
327	^M 111-trichloroethane	< 0.10	mg/kg	05/04/2006
327	^M carbon tetrachloride	< 0.10	mg/kg	05/04/2006
327	^M 1,1-dichloropropene	< 0.10	mg/kg	05/04/2006
327	^M benzene	< 0.10	mg/kg	05/04/2006
327	[™] 12-dichloroethane	< 0.10	mg/kg	05/04/2006
327	^M trichloroethylene	< 0.10	mg/kg	05/04/2008
327	^M 12-dichloropropane	< 0.10	mg/kg	05/04/2006
327	^M dibromomethane	< 0.10	mg/kg	05/04/2006
327	^M bromodichloromethane	< 0.10	mg/kg	05/04/2006
327	^M trans-13-dichloropropene	< 0.10	mg/kg	05/04/2006
327	^M toluene	< 0.10	mg/kg	05/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP1

Job:

FESB/D4746

Other ID:

1.00m

Sample No:

813874

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown clay with occasional stone

Method	Determination	Result	Units	Date of analysis
327	^M cis-13-dichloropropene	< 0.10	mg/kg	05/04/2006
327	^M 112-trichloroethane	< 0.10	mg/kg	05/04/2006
327	^M tetrachloroethylene	< 0.10	mg/kg	05/04/2006
327	^M 13-dichloropropane	< 0.10	mg/kg	05/04/2006
327	^M dibromochloromethane	< 0.10	mg/kg	05/04/2006
327	^M 12-dibromoethane	< 0.10	mg/kg	05/04/2006
327	^M chlorobenzene	< 0.10	mg/kg	05/04/2006
327	^M 1112-tetrachioroethane	< 0.10	mg/kg	05/04/2006
327	[™] ethylbenzene	< 0.10	mg/kg	05/04/2006
327	[™] mp-xylene	< 0.10	mg/kg	05/04/2006
327	[™] o-xylene	< 0.10	mg/kg	05/04/2006
327	[™] styrene	< 0.10	mg/kg	05/04/2006
327	^M bromoform	< 0.10	mg/kg	05/04/2006
327	[™] isopropylbenzene	< 0.10	mg/kg	05/04/2006
327	^M bromobenzene	< 0.10	mg/kg	05/04/2006
327	^M 123-trichloropropane	< 0.10	mg/kg	05/04/2006
327	^M 1122-tetrachioroethane	< 0.10	mg/kg	05/04/2006
327	[™] n-propylbenzene	< 0.10	mg/kg	05/04/2006
327	2-chlorotoluene	< 0.10	mg/kg	05/04/2006
327	[™] 4-chlorotoluene	< 0.10	mg/kg	05/04/2006
327	135-trimethylbenzene	< 0.10	mg/kg	05/04/2006
327	tert-butylbenzene	< 0.10	mg/kg	05/04/2006
327	[™] sec-butylbenzene	< 0.10	mg/kg	05/04/2006
327	^M 13-dichlorobenzene	< 0.10	mg/kg	05/04/2006
327	^M 14-dichlorobenzene	< 0.10	mg/kg	05/04/2006
327	[™] p-isopropyltoluene	< 0.10	mg/kg	05/04/2006
327	^M 12-dichlorobenzene	< 0.10	mg/kg	05/04/2006
327	[™] n-butylbenzene	< 0.10	mg/kg	05/04/2006
327	12-dibromo3chloropropane	< 0.10	mg/kg	05/04/2006
327	135-trichlorobenzene	< 0.10	mg/kg	05/04/2006
327	124-trichlorobenzene	< 0.10	mg/kg	05/04/2006
327	124-trimethylbenzene	< 0.10	mg/kg	05/04/2006
327	^M hexachlorobutadiene	< 0.10	mg/kg	05/04/2006
327	123-trichlorobenzene	< 0.10	mg/kg	05/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP1

Job:

FESB/D4746

Other ID:

1.00m

Sample No:

813874

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown clay with occasional stone

Method	Determination	Result	Units	Date of analysis
327	vinyl chloride	< 0.10	mg/kg	05/04/2006
322	^M Total Phenoi	< 0.50	mg/kg	04/04/2006
70	Asbestos Identification	ND		12/04/2006
70	Description of Sample*	SOIL		12/04/2006
Moisture	Moisture*	23	%	03/04/2006
Stones	Stones %*	29	%	03/04/2006
Commente				

Comments

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

OP3

Job:

FESB/D4746

Other ID:

0.75m

Sample No:

813875

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown gravel with many stone

Method	Determination	Result	Units	Date of analysis
30C	Antimony (Total)	14	mg/kg	01/04/2006
30/30C	[™] Arsenic (Total)	14	mg/kg	04/04/2006
52	[™] Barium (Total)	150	mg/kg	01/04/2006
52	^M Beryllium (Total)	0.68	mg/kg	01/04/2006
6	^M Boron (Soluble)	2.2	mg/kg	04/04/2006
30	^M Cadmium (Total)	0.58	mg/kg	01/04/2006
30	^M Chromium (Total)	26	mg/kg	01/04/2006
30	^M Copper (Total)	96	mg/kg	01/04/2006
30	[™] Lead (Total)	500	mg/kg	01/04/2006
52	^M Manganese (Total)	400	mg/kg	01/04/2006
30C	[™] Mercury (Total)	0.32	mg/kg	01/04/2006
30	^M Nickel (Total)	24	mg/kg	01/04/2006
30C	[™] Selenium (Total)	< 0.30	mg/kg	01/04/2006
30	[™] Zinc (Total)	150	mg/kg	01/04/2006
24	Chloride as CI*	860	mg/kg	07/04/2006
14	^M Cyanide (Total)	< 2.0	mg/kg	01/04/2006
47	[™] Sulphide as S	< 5.0	mg/kg	01/04/2006
	TOC by Ignition in Oxygen\$	4.1	%	24/04/2006
20A	Fluoride as F-*	< 0.50	mg/kg	04/04/2006
322	[™] Total Phenol	0.84	mg/kg	04/04/2006
70	Asbestos Identification	ND		12/04/2006
70	Description of Sample*	SOIL/STONE		12/04/2006
Moisture	Moisture*	13	%	03/04/2006
Stones	Stones %*	36	%	03/04/2006
Comments				

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP8

Job:

FESB/D4746

Other ID:

0.70m

Sample No:

813876

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown sand with occasional stone

Method	Determination	Result	Units	Date of analysis
6	^M Boron (Soluble)	0.76	mg/kg	04/04/2006
24	Chloride as CI*	350	mg/kg	07/04/2006
14	[™] Cyanide (Total)	< 2.0	mg/kg	01/04/2006
47	[™] Sulphide as S	< 5.0	mg/kg	01/04/2006
	TOC by Ignition in Oxygen\$	5.0	%	24/04/2006
20A	Fluoride as F-*	< 0.50	mg/kg	04/04/2006
322	[™] Total Phenoî	< 0.50	mg/kg	04/04/2006
70	Asbestos Identification	ND		12/04/2006
70	Description of Sample*	SOIL/STONE		12/04/2006
Moisture	Moisture*	6.1	%	03/04/2006
Stones	Stones %*	32	%	03/04/2006

Comments

Page 22 of 24

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP8

Job:

FESB/D4746

Other ID:

1.00m

Sample No:

813877

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown clay with many stone

Method	Determination	Result	Units	Date of analysis
30C	Antimony (Total)	1.2	mg/kg	01/04/2006
30/30C	[™] Arsenic (Total)	11	mg/kg	04/04/2006
52	^M Barium (Tota!)	82	mg/kg	01/04/2006
52	[™] Beryllium (Total)	0.75	mg/kg	01/04/2006
30	[™] Cadmium (Total)	< 0.50	mg/kg	01/04/2006
30	^M Chromium (Total)	23	mg/kg	01/04/2006
30	^M Copper (Total)	120	mg/kg	01/04/2006
30	^M Lead (Total)	340	mg/kg	01/04/2006
52	[™] Manganese (Total)	600	mg/kg	01/04/2006
30¢	^M Mercury (Total)	0.41	mg/kg	01/04/2006
30	^M Nickel (Total)	25	mg/kg	01/04/2006
30C	[™] Selenium (Total)	< 0.30	mg/kg	01/04/2006
30	[™] Zinc (Total)	86	mg/kg	01/04/2006
Moisture	Moisture*	11	%	03/04/2006
Stones	Stones %*	28	%	03/04/2006
Comments				

Site

Walbrook, London

Sample Type

SOIL

Sample ID:

AP12

Job:

FESB/D4746

Other ID:

1.00m

Sample No:

813878

Your Ref:

WAL050194

Your Order:

FRAMEWORK

Received:

29/03/2006

Description

Brown clay with occasional stones

Method	Determination	Result	Units	Date of analysis
30C	Antimony (Total)	11	mg/kg	01/04/2006
30/30C	[™] Arsenic (Total)	15	mg/kg	04/04/2006
52	^M Barium (Total)	150	mg/kg	01/04/2006
52	^M Beryllium (Total)	0.65	mg/kg	01/04/2006
6	^M Boron (Soluble)	1.5	mg/kg	04/04/2006
30	^M Cadmium (Total)	< 0.50	mg/kg	01/04/2006
30	^M Chromium (Total)	18	mg/kg	01/04/2006
30	^M Copper (Total)	170	mg/kg	01/04/2006
30	[™] Lead (Total)	1400	mg/kg	01/04/2006
52	[™] Manganese (Total)	610	mg/kg	01/04/2006
30C	[™] Mercury (Total)	6.6	mg/kg	03/04/2006
30	^M Nickel (Total)	24	mg/kg	01/04/2006
30C	[™] Selenium (Total)	0.31	mg/kg	01/04/2006
30	[™] Zinc (Total)	180	mg/kg	01/04/2006
24	Chloride as CI*	350	mg/kg	07/04/2006
14	[™] Cyanide (Total)	< 2.0	mg/kg	01/04/2006
47	^M Sulphide as S	< 5.0	mg/kg	01/04/2006
	TOC by Ignition in Oxygen\$	11	%	24/04/2006
20A	Fluoride as F-*	< 0.50	mg/kg	04/04/2006
322	[™] Total Phenol	< 0.50	mg/kg	04/04/2006
70	Asbestos Identification	ND		12/04/2006
70	Description of Sample*	SOIL		12/04/2006
Moisture	Moisture*	14	%	03/04/2006
Stones	Stones %*	29	%	03/04/2006
Commonte				

Comments

STL Midlands

Rayner House, 80 Lockhurst Lane,

Tel +44 (0)24 7658 4800 Fax +44 (0)24 7658 4848

Page 24 of 24

Synopses of Analytical Methods

Reference	Method Text
14	The cyanides in the sample are determined in two stages. Initially hydrogen cyanide is liberated at pH 4 into a fixing reagent. Then, the complex cyanides are dissociated and liberated from the same sample using orthophosphoric acid under the same conditions. The liberated HCN from both steps is absorbed in separate sodium hydroxide solutions and determined colorimetrically using a discrete autoanalyser.
30	Metals are extracted from land samples by boiling with hydrochloric/nitric acids (3:1 ratio). The measurement of metal concentrations is determined directly on an ICP-OES at defined wavelengths.
30/30C	Metals are extracted from land samples by boiling with hydrochloric/nitric acids (3:1 ratio). For the measurement of metal concentrations is determined on an ICP-OES at defined wavelengths. Where a result is 25mg/kg or above results are obtained directly. Otherwise results are obtained via hydride generation.
30C	Metals are extracted from land samples by boiling with hydrochloric/nitric acid (3:1 ratio). The measurement of metal concentrations is determined by means of hydride generation / atomic vapour on an ICP-OES at defined wavelengths
317	Hydrocarbons are extracted from land samples using pentane. The samples are shaken mechanically, sonicated, before being centrifuged. After separation an aliquot of the pentane layer is transferred to a separate vial and spiked with internal standard. Hydrocarbon content of this extract is then determined by GC- flame ionisation (FID). This analysis is carried out on an as received portion of sample.
322	Soil Sample is collected directly into a pre-weighed sample jar containing extraction solvent. On reaching the laboratory the sample is shaken for 30 minutes. A portion of sample is filtered using a gas tight syringe and a 0.45 micron syringe filter. This filtrate is analysed for phenois by reverse phase HPLC with electrochemical detection.
47	The sulphide content of land samples is determined via extraction with dilute sulphuric acid and steam distillation into zinc acetate solution and sodium hydroxide. The distillate is then titrated against sodium thiosulphate solution using iodine indicator.
52	Metals are extracted from land samples by boiling with hydrochloric/nitric acids (3:1 ratio). The measurement of metal concentrations is determined directly on an ICP-OES at defined wavelengths.
6	Boron is extracted from land samples using boiling deionised water followed by vacuum filtration. The measurement of boron in the filtrate is then determined directly by ICP-OES at the defined wavelength.

Soil Analysis

FESB/D4746

Walbrook, London

Your Reference:- WAL050194 Your Order:- FRAMEWORK

CAS Number Sample Ref		•	Limit Of	81389	O .			
Detname	Method	Units	Detection	AQC	+3s	+2s	-2s	-3s
Antimony (Total)	30C	mg/kg	1.0000	N/S				
Arsenic (Total)	30/30C	mg/kg	1.0000	19	24.5000	22.6000	15.0000	13.100
Barium (Total)	52	mg/kg	0.5000	N/S				
Beryllium (Total)	52	mg/kg	. 0.2000.	N/S				
Boron (Soluble)	6	mg/kg	: 0.2500	2.7	3.1400.	2.9000	1.9400	1.700
Cadmium (Total)	30	mg/kg	0.5000	6.8	7.7700	7.4200	6.0200	5.670
Chromium (Total)	30	mg/kg	5.0000	79	88.6900	83.9200	64.8400	60.070
Copper (Total)	30	mg/kg	2.5000	1300	1374.0000	1318.0000	1094.0000	1038.000
Lead (Total)	30	mg/kg	5.0000	820	959.8000	905.9000	690.3000	636.400
Manganese (Total)	52	mg/kg	2.0000	N/S				
Mercury (Total)	30C	mg/kg	0.2000	8.4	10.1140	9.3340	6.2140	5.434
Nickel (Total)	30	mg/kg	2.5000	160	181.5000	172.3000	135.5000	126.30
Potassium (Total)*	CASQ	mg/kg	1:0000	N/S				
Selenium (Total)	30C	mg/kg	0.3000	7.5	9.5310	8.7980	5.8660	5.13
Zinc (Total)	30	mg/kg	5.0000	1200-	1350.0000	1284.0000	1020.0000	954.00
Cyanide (Total)	14	mg/kg	2.0000	82	113.1350	104.4320	69.6200	60.91
Sulphide as S	47	mg/kg	5.0000	N/S				
Fluoride as F-*	20A	mg/kg	0.5000	N/S	•			
>> TPH SUITE <<			• ••	N/S				
TPH by GC (>C6-C10)	317	mg/kg	50.0000	N/S				
TPH by GC (>C10 - C20)	317	mg/kg	50.0000	N/S				
TPH by GC (>C20-C40)	317	mg/kg	50.0000	N/S				
TPH by GC (>C6 - C40)	317	mg/kg	50.0000	5100	6291.0000	5807.0000	3871.0000	3387.00
>> SVOC SUITE <<				N/S				
phenol	316	mg/kg	1.0000	N/S				
2-picoline	316	mg/kg	1.0000	N/S				
o-toluidine*	SVOCS1	mg/kg	0.1000	N/S				
analine	316	mg/kg	1.0000	N/S				
bis(2-chloroethyl)ether	316	mg/kg	1.0000	N/S				
2-chlorophenol	316	mg/kg	1.0000	N/S				
1,3-dichlorobenzene	316	mg/kg	1.0000	N/S				
benzyl alcohol	316	mg/kg	1.0000	Ň/S.	•.			
L 14-dichlorobenzene Wildlands Ventry CV6 5PZ United K		Fax +4	1.0000 14 (0)24 7658 48 14 (0)24 7658 48 1-Itd.com	N/S 300 348			Encise C BUSIN	ESS

Soil Analysis

	1,2-dichlorobenzene	316	mg/kg	1.0000	N/S				
	bis(2-chloroisopropyl)ether	316	mg/kg	1.0000	N/S				
	n-nitroso-di-n-propylamine	316	mg/kg	1.0000	N/S				
	hexachloroethane	316	mg/kg	1.0000	N/S				
	2-methylphenol	316	mg/kg	1.0000	N/S				
	nitrobenzene	316	mg/kg	1.0000	N/S				
	4-methylphenol	316	mg/kg	1.0000	N/S				
	isophorone	316	mg/kg	1.0000	N/S				
	2,4-dimethylphenol	316	mg/kg	1.0000	N/S				
	acetophenone	316	mg/kg	1.0000	N/S				
	2-nitrophenol	316	mg/kg	1.0000	N/S				
	bis(2-chloroethoxy)methane	316	mg/kg	1.0000	N/S				
	2,4-dichlorophenol	316	mg/kg	1.0000	N/S				
	1,2,4-trichlorobenzene	316	mg/kg	1.0000	N/S				
	naphthalene	316	mg/kg	1.0000	N/S				
	hexachlorobutadiene	316	mg/kg	1.0000	N/S				
	4-chioro-3-methylphenol	316	mg/kg	1.0000	N/S				
	2-methylnaphthalene	316	mg/kg	1.0000	N/S				
	n-nitrosopiperidine	316	mg/kg	1.0000	N/S				
	2,4,6-trichlorophenol	316	mg/kg	1.0000	N/S				
	2,4,5-trichlorophenol	316	mg/kg	1.0000	N/S				
	2-chloronaphthalene	316	mg/kg	1.0000	N/S				
	dimethylphthalate	316	mg/kg	1.0000	N/S				
	2,6-dinitrotoluene	316	mg/kg	1.0000	N/S				
	benzoic acid	316	mg/kg	1.0000	N/S				
	acenaphthylene	316	mg/kg	1.0000	N/S				
	acenaphthene	316	mg/kg	1.0000	N/S				
	2,4-dinitrotoluene	316	mg/kg	1.0000	N/S				
	diethylphthalate	316	mg/kg	1.0000	N/S				
	4-nitrophenol	316	mg/kg	1.0000	N/S				
	4-chlorophenyl-phenylether	316	mg/kg	1.0000	N/S				
	fluorene	316	mg/kg	1.0000	N/S				
	carbazole	316	mg/kg	1.0000	N/S				
	n-nitrosodiphenylamine	316	mg/kg	1.0000	N/S				
	4-bromophenyl-phenylether	316	mg/kg	1.0000	N/S				
	hexachlorobenzene	316	mg/kg	1.0000	N/S				
	4-chloroaniline	316	mg/kg	1.0000	24	35.1000	31.8000	18.6000	15.3000
	pentachlorophenol	316	mg/kg	1.0000	N/S				
	26-dichlorophenol	316	mg/kg	1.0000	N/S		•		
Rayr	midlands Mrdlands ner House, 80 Lockhurst La		mg/kg Tel +44 (0)24 Fax +44 (0)24	7658 4848	N/S			Greates (Edigraph)	
Cove	entry CV6 5PZ United Kingd	ıom	info@stl-Itd.con	7			1 m	AWARDS	AGS

Soil Analysis

anthracene	316	mg/kg	1.0000	N/S
di-n-butylphthalate	316	mg/kg	1.0000	N/S
fluoranthene	316	mg/kg	1.0000	N/S
n-nitrosodibutylamine	316	mg/kg	1.0000	N/S
pyrene	316	mg/kg	1.0000	N/S
butylbenzylphthalate	316	mg/kg	1.0000	N/S
benzo(a)anthracene	316	mg/kg	1.0000	N/S
chrysene	316	mg/kg	1.0000	N/S
1245-tetrachlorobenzene	316	mg/kg	1.0000	N/S
bis(2-ethylhexyl)phthalate	316	mg/kg	1.0000	N/S
di-n-octylphthalate	316	mg/kg	1.0000	N/S
hexachlorocyclopentadien	316	mg/kg	1.0000	N/S
benzo(b)fluoranthene	316	mg/kg	1.0000	N/S
benzo(k)fluoranthene	316	mg/kg	1.0000	N/S
benzo(a)pyrene	316	mg/kg	1.0000	N/S
indeno(123-cd)pyrene	316	mg/kg	1.0000	N/S
dibenzo(ah)anthracene	316	mg/kg	1.0000	N/S
benzo(ghi)perylene	316	mg/kg	1.0000	N/S
2-nitroaniline	316	mg/kg	1.0000	N/S
3-nitroaniline	316	mg/kg	1.0000	N/S
Dibenzofuran	316	mg/kg	1.0000	N/S
pentachlorobenzene	316	mg/kg	1.0000	N/S
12-diphenylhydrazine	316	mg/kg	1.0000	N/S
2-fluorophenol	316	%	1.0000	N/S
2-naphthylamine	316	mg/kg	1.0000	N/S
phenol-d6	316	%	1.0000	N/S
nitrobenzene-d5	316	%	1.0000	N/S
2346-tetrachlorophenol	316	mg/kg	1.0000	N/S
2-fluorobiphenyl	316	%	1.0000	N/\$
2,4,6-tribromophenol	316	%	1.0000	N/S
terphenyl-d14	316	%	1.0000	N/S
4-nitroaniline	316	mg/kg	1.0000	N/\$
2-methyl-46-dinitropheno	316	mg/kg	1.0000	N/S
diphenylamine	316	mg/kg	1.0000	N/S
phenacetin	316	mg/kg	1.0000	N/S
4-aminobiphenyl	316	mg/kg	1.0000	N/S
benzidine	316	mg/kg	1.0000	N/S
dimethylaminoazobenzene	316	mg/kg	1.0000	N/S
n-nitrosodimethylamine	316	mg/kg	1.0000	N/S
STL Middanus STL Middanus Rayner House, 80 Lockhurst Lar	-		1.0000 24 7658 4800 24 7658 4848	N/S

Coventry CV6 5PZ United Kingdom

info@stl-ltd.com

Soil Analysis

			-					
7,12-dimethylbenz(a)anth	316	mg/kg	1.0000	N/S				
3-methylcholanthrene	316	mg/kg	1.0000	N/S				
>> BTEX SUITE <<				N/S				
>> VOC'S SUITE <<				N/S				
11-dichloroethene	327	mg/kg	0.1000	N/S				
dichloromethane	327	mg/kg	0.1000	N/S				
trans-12-dichloroethene	327	mg/kg	0.1000	N/S				
11-dichloroethane	327	mg/kg	0.1000	N/S				
2,2-dichloropropane	327	mg/kg	0.1000	N/S				
cis-12-dichloroethene	327	mg/kg	0.1000	N/S				
bromochloromethane	327	mg/kg	0.1000	N/S				
chloroform	327	mg/kg	0.1000	N/S				
111-trichloroethane	327	mg/kg	0.1000	N/S				
carbon tetrachloride	327	mg/kg	0.1000	N/S				
1,1-dichloropropene	327	mg/kg	0.1000	N/S				
benzene	327	mg/kg	0.1000	0.93	1.2050	1.0910	0.6350	0.5210
12-dichloroethane	327	mg/kg	0.1000	N/S				
trichloroethylene	327	mg/kg	0.1000	0.71	1.0430	0.9460	0.5580	0.4610
12-dichloropropane	327	m g /kg	0.1000	N/S				
dibromomethane	327	mg/kg	0.1000	N/S				
bromodichloromethane	327	mg/kg	0.1000	N/S				
trans-13-dichloropropene	327	mg/kg	0.1000	N/S				
toluene	327	mg/kg	0.1000	0.66	1.0410	0.9380	0.5260	0.4230
cis-13-dichloropropene	327	mg/kg	0.1000	N/S				
112-trichloroethane	327	mg/kg	0.1000	N/S				
tetrachloroethylene	327	mg/kg	0.1000	N/S				
13-dichloropropane	327	mg/kg	0.1000	N/S				
dibromochloromethane	327	mg/kg	0.1000	N/S				
12-dibromoethane	327	mg/kg	0.1000	N/S				
chlorobenzene	327	mg/kg	0.1000	0.91	1.2880	1.1410	0.5530	0.4060
1112-tetrachloroethane	327	mg/kg	0.1000	N/S				
ethylbenzene	327	mg/kg	0.1000	0.81	1.1930	1.0600	0.5280	0.3950
mp-xylene	327	mg/kg	0.1000	N/S				
o-xylene	327	mg/kg	0.1000	0.76	1.1900	1.0530	0.5050	0.3680
styrene	327	mg/kg	0.1000	N/S				
bromoform	327	mg/kg	0.1000	N/S				
isopropylbenzene	327	mg/kg	0.1000	N/S				
bromobenzene	327	m g /kg	0.1000	N/S				
123-trichloropropane	327	mg/kg	0.1000	N/S				
1122-tetrachloroethane fidlands	327	mg/kg Tel +44 (0):	0.1000 24 7658 4800	N/S			Evening Telegraph	 \
المنابا المسامل الممال الممالية		=					Comitted Critical Table	

STL N

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdorn

Tel +44 (0)24 7658 4800 Fax +44 (0)24 7658 4848

Soil Analysis

n-propylbenzene	327	mg/kg	0.1000	N/S
2-chlorotoluene	327	mg/kg	0.1000	N/S
4-chlorotoluene	327	mg/kg	0.1000	N/S
135-trimethylbenzene	327	mg/kg	0.1000	N/S
tert-butylbenzene	327	mg/kg	0.1000	N/S
sec-butylbenzene	327	mg/kg	0.1000	N/S
13-dichlorobenzene	327	mg/kg	0.1000	N/S
14-dichlorobenzene	327	mg/kg	0.1000	N/S
p-isopropyltoluene	327	mg/kg	0.1000	N/S
12-dichlorobenzene	327	mg/kg	0.1000	N/S
n-butylbenzene	327	mg/kg	0.1000	N/S
12-dibromo3chloropropane	327	mg/kg	0.1000	N/S
135-trichlorobenzene	327	mg/kg	0.1000	N/S
124-trichlorobenzene	327	mg/kg	0.1000	N/S
124-trimethylbenzene	327	mg/kg	0.1000	N/S
hexachlorobutadiene	327	mg/kg	0.1000	N/S
123-trichlorobenzene	327	mg/kg	0.1000	N/S
vinyl chloride	327	mg/kg	0.1000	N/S
Asbestos Identification	70		0.1000	N/S
Description of Sample*	70		0.0000	N/S

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Water Analysis

FESB/D4746

Walbrook, London

Your Reference:- WAL050194 Your Order:- FRAMEWORK

CAS Number			Limit	81389	1			
Sample Ref	6.4 may 1 - 3	Units	Of Detection	AQC	+3s	+2s	-2s	-3s
Detname	Method	Units						
		,		:	Take the second of the second			
Arsenic (Soluble)*	25C	æg/l	10.0000	160	184.0000	176.0000	144.0000	136.000
Cadmium (Soluble)	53F	æg/i	2.0000	380	445.0000	430,0000	370,0000	355.000
Calcium (Soluble)	53F	æg/l	200.0000	N/S.				
Chromium (Soluble)	53F	æg/l	10.0000	750	880.0000	850.0000	730.0000	700.000
Copper (Soluble)	53F	æg/l	10.0000	7800	9055.0000	8670.0000	7130.0000	6745.000
ron (Soluble)	53F	æg/l	10.0000	N/S	•			
_ead (Soluble)	53F	æg/l	50.0000	2300	2760.0000	2640.0000	2160.0000	2040.000
Magnesium (Soluble)	53F	æg/l	50.0000	N/S				
Manganese (Soluble)	53F	æg/l	10.0000	N/S				
Mercury (Soluble)*	25 C	æg/l	1.0000	84	92.0000	88.0000	72.0000	68.000
Nickel (Soluble)	53F	æg/l	20.0000	760	877.0000	848.0000	732.0000	703.000
Potassium (Soluble)	53F	æg/l	200.0000	N/S				
Selenium (Soluble)*	25C	æg/l	2.0000	78	92.0000	88.0000	72.0000	68.000
Sodium (Soluble)	53F	æg/l	50.0000	N/S				
Zinc (Soluble)	53F	æg/l	10.0000	3900	4600.0000	4400.0000	3600.0000	3400.000
Cyanide (Free)*	14A	mg/l	0.0500	0.80	0.9350	0.8680	0.6000	0.533
Cyanide (Total)*	14A	mg/l	0.0500	0.73	0.9320	0.8780	0.6620	0.608
Sulphate as SO3	60	g/l	0.0200	0.80	0.8915	0.8580	0.7240	0.690
Thiocyanate as CN	16	mg/l	0.1000	3.9	4.6290	4.4560	3.7640	3.591
Ammonia as N	60	mg/l	0.2000	10	11.2700	10.7800	8.8200	8.330
Chloride as Cl-	60	mg/i	2.0000	200	214.6850	210.1220	191.8700	187.307
Nitrate as N	60 .	mg/i	0.5000	N/S				
Nitrate as NO3	60	mg/l	2.0000	N/S				
Nitrite as N	60	mg/l	0.0200	0.40	0.4535	0.4340	0.3560	0.336
Sulphide as S	38A	mg/l	0.0100	0.29	0.3410	0.3260	0.2660	0.251
Total Org.Carbon (Filt)	41	mg/l	1.0000	19	26.0000	24.0000	16.0000	14.000
>> TPH SUITE <<			$(x,y,y) \in \mathcal{C}$	N/S				
TPH by GC (>C6 - C10)	318	æg/l	100.0000	N/S				
TPH by GC (>C10 - C20)	318	æg/l	100.0000	N/S				
TPH by GC (>C20 - C40)	318	æg/l	100.0000	N/S				
TPH by GC (>C6 - C40)	318	æg/l	100.0000	N/S				
>> BTEX SUITE <<				N/S				

STL Midiandene*

BTEXW1 Tel #44 (0)24 7658.4800

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom Fax +44 (0)24 7658 4848 info@stl-ltd.com

Water Analysis

toluene*	BTEXW1	æg/l	10.0000	N/S				
ethylbenzene*	BTEXW1	æg/l	10.0000	N/S				
mp-xylene*	BTEXW1	æg/l	10.0000	N/S				
o-xylene*	BTEXW1	æg/l	10.0000	N/S				
catechol*	PHOHBG2	æg/l	0.5000	N/S				
phenol*	PHOHBG2	æg/l	0.5000	N/S				
cresols*	PHOHBG2	æg/l	0.5000	240	270.9000	255.6000	194.4000	179.1000
xylenols*	PHOHBG2	æg/l	0.5000	480	521.7000	497.8000	402.2000	378.3000
trimethylphenol*	PHOHBG2	æg/l	0.5000	290	350.4000	333.6000	266.4000	249.6000
Total Phenol*	PHOHBG2	æg/l	2.5000	1200	1248.6000	1207.4000	1042.6000	1001.4000

ANALYSIS RESULTS PAGE 1 OF 3 PAGES

18 May 2006

Ms L Brocklesby
Fugro Engineering Services Limited (Southern)
Fugro House
Hithercroft Road
Wallingford
Oxfordshire
OX10 9RB

Test Report: FESB/D5026

Dear Ms Brocklesby

Please find enclosed the results of the analysis carried out on the samples submitted from Walbrook on 19 April 2006.

I trust you will find these satisfactory but should you have any queries please contact customer services.

Yours sincerely

M Broome

LOGISTICS MANAGER

Determinations marked * in this certificate are not included in the UKAS accreditation schedule for our laboratory. Opinions and interpretations expressed herein, and marked #, are outside the scope of UKAS accreditation. Determinations marked \$ were subcontracted. Unless otherwise stated, Severn Trent was not responsible for sampling. Information about methods and performance characteristics of the determinations are available on request. Unless otherwise agreed, as received soils will be disposed of effer 30 days; dried soils after 30 days and waters/leachates after 10 days from the issue of the final report. Soil analysis is carried out on air-dried and ground test portion of the semple.

Soil Analysis

PAGE 2 OF 3

FESB/D5026 Walbrook

Your Reference:- WAL050194 Your Order:- FRAMEWORK

	· · · · · · · · · · · · · · · · · · ·		<u>_</u>	
CAS Number:		•	818656	818657
Sample Ref			OP2	OP2
Detname	Method	Units	0.50m	0.70m
Moisture @ 30øC*	33A	%	15	18
Stones %*	Q.P.5.4.I	%	36	37
Antimony (Total)	30C	mg/kg	N/S	< 1.0
Arsenic (Total)	30/30C	mg/kg	N/S	12
Barium (Total)	52	mg/kg	N/S	140
Beryllium (Total)	52	mg/kg	N/S	0.72
Boron (Soluble)	6	mg/kg	1.3	N/S
Cadmium (Total)	30	mg/kg	N/S	< 0.50
Chromium (Total)	30	mg/kg	N/S	23
Copper (Total)	30	mg/kg	N/S	94
Lead (Total)	30	mg/kg	N/S	740
Manganese (Total)	52	mg/kg	N/S	730
Mercury (Total)	30C	mg/kg	N/S	0.26
Nickel (Total)	30	mg/kg	N/S	22
Selenium (Total)	30C	mg/kg	N/S	0.37
Zinc (Total)	30	mg/kg	N/S	91
Chloride (2:1 Water Extract)*	12A	g/l	0.07	N/S
Cyanide (Total)	14	mg/kg	< 2.0	N/S
Phenols (Total)	40A	mg/kg	< 0.50	N/S
Sulphide as S	47	mg/kg	5.5	N/S
TOC by Ignition in Oxygen\$		%	2.1	N/S
TOC by Ignition in Oxygen	27	%	N/S	N/S
Fluoride as F-*	20A	mg/kg	< 0.50	N/S

<u>Key</u>

N/S - Not Scheduled I/S - Insufficient Sample

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Text Data

PAGE 3 OF 3

FESB/D5026 Walbrook

Your Reference:- WAL050194 Your Order:- FRAMEWORK

_CAS No	Samp	le Ref	Asbestos Identification	Description of Sample*
818656	OP2	0.50m	ND	SOIL/STONE
818657	OP2	0.70m	N/S	N/S

<u>key</u>

N/S - Not Scheduled I/S - Insufficient Sample

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Soil Analysis

FESB/D5026

Walbrook

Your Reference:- WAL050194 Your Order:- FRAMEWORK

CAS Number Sample Ref	•		Limit Of	81865	58			
Detname	Method	Units	Detection	AQC	+3s	+2s	-2s	-3s
Antimony (Total)	30C	mg/kg	1.0000	N/S				
Arsenic (Total)	30/30C	mg/kg	1.0000	18	24.5000	22.6000	15.0000	13.1000
Barium (Total)	52	mg/kg	0.5000	N/S				
Beryllium (Total)	52	mg/kg	0.2000	N/S				
Boron (Soluble)	6	mg/kg	0.2500	2.3	3.1400	2.9000	1.9400	1.7000
Cadmium (Total)	30	mg/kg	0.5000	6.2	7.7700	7.4200	6.0200	5.6700
Chromium (Total)	30	mg/kg	5.0000	72	88.6900	83.9200	64.8400	60.0700
Copper (Total)	30	mg/kg	2.5000	1200	1374.0000	1318.0000	1094.0000	1038.0000
Lead (Total)	30	mg/kg	5.0000	730	959.8000	905.9000	690.3000	636.4000
Manganese (Total)	52	mg/kg	2.0000	N/S				
Mercury (Total)	30C	mg/kg	0.2000	7.7	10.1140	9.3340	6.2140	5.4340
Nickel (Total)	30	mg/kg	2.5000	150	181.5000	172.3000	135.5000	126.3000
Selenium (Total)	30C	mg/kg	0.3000	7.5	9.5310	8.7980	5.8660	5.1330
Zinc (Total)	30	mg/kg	5.0000	1000	1350.0000	1284.0000	1020.0000	954.0000
Chloride (2:1 Water Extract)*	12A	g/l	0.0500	N/S				
Cyanide (Total)	14	mg/kg	2.0000	74	113.1350	104.4320	69.6200	60.9170
Phenols (Total)	40A	mg/kg	0.5000	0.60	0.8240	0.7540	0.4740	0.4040
Sulphide as S	47	mg/kg	5.0000	N/S				
TOC by Ignition in Oxygen	27	%	0.1000	N/S				
Fluoride as F-*	20A	mg/kg	0.5000	N/S				
Asbestos Identification	70		0.1000	N/S				
Description of Sample*	70		0.0000	N/S				

24/05/2006

Ms Lucy Brocklesby

RECEIVED 2 5 MAY 2006

Page 1 of 14

Fugro Engineering Services Limited (Basingstoke)
Fugro House
Hithercroft Road
Wallingford
Oxfordshire
OX10 9RB

Test Report: FESB/D4991

Dear Ms Brocklesby

Please find enclosed the results of the analysis carried out on the samples submitted from Walbrook London on 11/04/2006.

Uncertainty Of Measurement Data in accordance with ISO 17025 is available upon request.

I trust you will find these satisfactory but should you have any queries please contact customer services.

Yours sincerely

Paul Woodbridge

INORGANICS MANAGER

Determinations marked * in this certificate are not included in the UKAS accreditation schedule for our laboratory. Determinations marked M have met the requirements of the MCERTS performance standard. Opinions and interpretations expressed herein, and marked #, are outside the scopa of UKAS accreditation. Determinations marked \$ were subcontracted. Unless otherwise steted, Severn Trent - Midlands was not responsible for sampling. Information about methods and performance characteristics of the determinations are available on request. Unless otherwise agreed, as received soils will be disposed of after 30 days and waters/leachates after 10 days from the issue of the final report.

Analysis carried out on air-dried and ground test portion of the sample, unless otherwise stated in the synopses of analytical methods. Air drying is carried out at not greater than 30°C. All results are reported on an air-dried basis,

Samples are not preserved on site, unless otherwise stated in the synopses of analytical methods.

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook London

Sample Type

SOIL

Sample ID:

AP2

Job:

FESB/D4991

Other ID:

1.00m

Sample No:

817279

Your Ref:

WAL 050194

Your Order:

FRAMEWORK

Received:

11/04/2006

Description

Brown sand with occasional gravel

	Determination	Result	Units	Date of analysis
30C	Antimony (Total)	4.8	mg/kg	22/04/2006
30/30C	^M Arsenic (Total)	19	mg/kg	22/04/2006
52	^M Barium (Total)	180	mg/kg	22/04/2006
52	^M Beryllium (Total)	0.91	mg/kg	22/04/2006
6	^M Boron (Soluble)	3.2	mg/kg	20/04/2006
30	^M Cadmium (Total)	< 0.50	mg/kg	22/04/2006
30	^M Chromium (Total)	23	mg/kg	22/04/2006
30	^м Copper (Total)	170	mg/kg	22/04/2006
30	^M Lead (Total)	990	mg/kg	22/04/2006
52	Magnesium (Total)	1500	mg/kg	22/04/2006
30C	^м Mercury (Total)	3.1	mg/kg	22/04/2006
30	[™] Nickel (Total)	27	mg/kg	22/04/2006
30C	^M Selenium (Total)	0.47	mg/kg	22/04/2006
30	^M Zinc (Total)	190	mg/kg	22/04/2006
12A	Chloride (2:1 Water Extract)*	0.10	g/l	20/04/2006
14	^M Cyanide (Total)	< 2.0	mg/kg	18/04/2006
47	^M Sulphide as S	< 5.0	mg/kg	18/04/2006
	TOC by Ignition in Oxygen\$	0.99	%	09/05/2006
20A	Fluoride as F-*	9.7	mg/kg	19/04/2006
	>> TPH SUITE <<	•		12/04/2006
317	TPH by GC (>C6-C10)	< 50	mg/kg	20/04/2006
317	TPH by GC (>C10 - C20)	< 50	mg/kg	20/04/2006
317	TPH by GC (>C20-C40)	< 50	mg/kg	20/04/2006
317	[™] TPH by GC (>C6 - C40)	< 50	mg/kg	20/04/2006
	>> SVOC SUITE <<	•		12/04/2006
316	^M phenol	< 1.0	mg/kg	24/04/2006
316	2-picoline	< 1.0	mg/kg	24/04/2006
316	analine	< 1.0	mg/kg	24/04/2006
SVOCS1	o-toluidine*	< 0.10	mg/kg	24/04/2006
316	bis(2-chloroethyl)ether	< 1.0	mg/kg	24/04/2006
316	2-chlorophenol	< 1.0	mg/kg	24/04/2006
316	1,3-dichlorobenzene	< 1.0	mg/kg	24/04/2006
316	benzyl alcohol	< 1.0	mg/kg	24/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

SEVERN STL

Leaders in Environmental Testing

Site

Walbrook London

Sample Type

SOIL

Sample ID:

AP2

Job:

FESB/D4991

Other ID:

1.00m

Sample No:

817279

Your Ref:

WAL 050194

Your Order:

FRAMEWORK

Received:

11/04/2006

Description

Brown sand with occasional gravel

Method	Determination	Result	Units	Date of analysis
316	M 1,2-dichlorobenzene	< 1.0	mg/kg	24/04/2006
316	bis(2-chloroisopropyl)ether	< 1.0	mg/kg	24/04/2006
316	n-nitroso-di-n-propylamine	< 1.0	mg/kg	24/04/2006
316	^M hexachloroethane	< 1.0	mg/kg	24/04/2006
316	^M 2-methylphenol	< 1.0	mg/kg	24/04/2006
316	^M nitrobenzene	< 1.0	mg/kg	24/04/2006
316	^M 4-methylphenol	< 1.0	mg/kg	24/04/2006
316	[™] isophorone	< 1.0	mg/kg	24/04/2006
316	2,4-dimethylphenol	< 1.0	mg/kg	24/04/2006
316	acetophenone	< 1.0	mg/kg	24/04/2006
316	2-nitrophenol	< 1.0	mg/kg	24/04/2006
316	bis(2-chloroethoxy)methane	< 1.0	mg/kg	24/04/2006
316	^M 2,4-dichloropheno!	< 1.0	mg/kg	24/04/2006
316	1,2,4-trichlorobenzene	< 1.0	mg/kg	24/04/2006
316	naphthalene	< 1.0	mg/kg	24/04/2006
316	^M hexachlorobutadiene	< 1.0	mg/kg	24/04/2006
316	^M 4-chloro-3-methylphenol	< 1.0	mg/kg	24/04/2006
316	[™] 2-methylnaphthalene	< 1.0	mg/kg	24/04/2006
316	n-nitrosopiperidine	< 1.0	mg/kg	24/04/2006
316	2,4,6-trichlorophenol	< 1.0	mg/kg	24/04/2006
316	[™] 2,4,5-trichlorophenol	< 1.0	mg/kg	24/04/2006
316	[™] 2-chloronaphthalene	< 1.0	mg/kg	24/04/2006
316	^M dimethylphthalate	< 1.0	mg/kg	24/04/2006
316	[™] 2,6-dinitrotoluene	< 1.0	mg/kg	24/04/2006
316	benzoic acid	< 1.0	mg/kg	24/04/2006
316	[™] acenaphthylene	< 1.0	mg/kg	24/04/2006
316	[™] acenaphthene	< 1.0	mg/kg	24/04/2006
316	^M 2,4-dinitrotoluene	< 1.0	mg/kg	24/04/2006
316	^M diethylphthalate	< 1.0	mg/kg	24/04/2006
316	^M 4-nitrophenol	< 1.0	mg/kg	24/04/2006
316	^M 4-chlorophenyl-phenylether	< 1.0	mg/kg	24/04/2006
316	^M fluorene	< 1.0	mg/kg	24/04/2006
316	carbazole	< 1.0	mg/kg	24/04/2006
316	n-nitrosodiphenylamine	< 1.0	mg/kg	24/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook London

Sample Type

SOIL

Sample ID:

AP2

Job:

FESB/D4991

Other ID:

1.00m

Sample No:

817279

Your Ref:

WAL 050194

Your Order:

FRAMEWORK

Received:

11/04/2006

Description

Brown sand with occasional gravel

Method	Determination	Result	Units	Date of analysis
316	^M 4-bromophenyl-phenylether	< 1.0	mg/kg	24/04/2006
316	4-chloroaniline	< 1.0	mg/kg	24/04/2006
316	^M hexachlorobenzene	< 1.0	mg/kg	24/04/2006
316	^M pentachlorophenol	< 1.0	mg/kg	24/04/2006
316	26-dichlorophenol	< 1.0	mg/kg	24/04/2006
316	^M phenanthrene	< 1.0	mg/kg	24/04/2006
316	^M anthracene	< 1.0	mg/kg	24/04/2006
316	^M di-n-butylphthalate	< 1.0	mg/kg	24/04/2006
316	^M fluoranthene	< 1.0	mg/kg	24/04/2006
316	n-nitrosodibutylamine	< 1.0	mg/kg	24/04/2006
316	^M pyréne	< 1.0	mg/kg	24/04/2006
316	^M butylbenzylphthałate	< 1.0	mg/kg	24/04/2006
316	[™] benzo(a)anthracene	< 1.0	mg/kg	24/04/2006
316	[™] chrysene	< 1.0	mg/kg	24/04/2006
316	1245-tetrachlorobenzene	< 1.0	mg/kg	24/04/2006
316	^M bis(2-ethylhexyl)phthalate	< 1.0	mg/kg	24/04/2006
316	^M di-n-octylphthalate	< 1.0	mg/kg	24/04/2006
316	hexachlorocyclopentadien	< 1.0	mg/kg	24/04/2008
316	benzo(b)fluoranthene	< 1.0	mg/kg	24/04/2006
316	benzo(k)fluoranthene	< 1.0	mg/kg	24/04/2006
316	^M benzo(a)pyrene	< 1.0	mg/kg	24/04/2006
316	indeno(123-cd)pyrene	< 1.0	mg/kg	24/04/2006
316	dibenzo(ah)anthracene	< 1.0	mg/kg	24/04/2006
316	benzo(ghi)perylene	< 1.0	mg/kg	24/04/2006
316	2-nitroaniline	< 1.0	mg/kg	24/04/2006
316	3-nitroaniline	< 1.0	mg/kg	24/04/2006
316	[™] Dibenzofuran	< 1.0	mg/kg	24/04/2006
316	pentachlorobenzene	< 1.0	mg/kg	24/04/2006
316	12-diphenylhydrazine	< 1.0	mg/kg	24/04/2006
316	2-fluorophenoł	88	%	24/04/2006
316	2-naphthylamine	< 1.0	mg/kg	24/04/2006
316	phenol-d6	83	%	24/04/2006
316	nitrobenzene-d5	71	%	24/04/2006
316	2346-tetrachlorophenol	< 1.0	mg/kg	24/04/2006
			· -	

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook London

Sample Type

SOIL

817279

Sample ID:

AP2 1.00m

Job:

FESB/D4991

Other ID: Your Ref:

WAL 050194

Sample No:
Your Order:

FRAMEWORK

Received:

11/04/2006

Description

Brown sand with occasional gravel

Method	Determination	Result	Units	Date of analysis
316	2-fluorobiphenyl	82	%	24/04/2006
316	2,4,6-tribromophenol	64	%	24/04/2006
316	terphenyl-d14	85	%	24/04/2006
316	4-nitroaniline	< 1.0	mg/kg	24/04/2006
316	2-methyl-46-dinitropheno	< 1.0	mg/kg	24/04/2006
316	diphenylamine	< 1.0	mg/kg	24/04/2006
316	phenacetin	< 1.0	mg/kg	24/04/2006
316	4-aminobiphenyl	< 1.0	mg/kg	24/04/2006
316	benzidine	< 1.0	mg/kg	24/04/2006
316	dimethylaminoazobenzene	< 1.0	mg/kg	24/04/2006
316	n-nitrosodimethylamine	< 1.0	mg/kg	24/04/2006
316	33-dichlorobenzidine	< 1.0	mg/kg	24/04/2006
316	7,12-dimethylbenz(a)anth	< 1.0	mg/kg	24/04/2006
316	3-methylcholanthrene	< 1.0	mg/kg	24/04/2006
	M >> BTEX SUITE <<			24/04/2006
	M >> VOC'S SUITE <<			12/04/2006
327	[™] 11-dichloroethene	< 0.10	mg/kg	19/04/2006
327	^M dichloromethane	< 0.10	mg/kg	19/04/2006
327	^M trans-12-dichloroethene	< 0.10	mg/kg	19/04/2006
327	^M 11-dichloroethane	< 0.10	mg/kg	19/04/2006
327	^M 2,2-dichloropropane	< 0.10	mg/kg	19/04/2006
327	^M cis-12-dichloroethene	< 0.10	mg/kg	19/04/2006
327	^M bromochloromethane	< 0.10	mg/kg	19/04/2006
327	^M chloroform	< 0.10	mg/kg	19/04/2006
327	^M 111-trichloroethane	< 0,10	mg/kg	19/04/2006
327	^M carbon tetrachloride	< 0.10	mg/kg	19/04/2006
327	^M 1,1-dichloropropene	< 0.10	mg/kg	19/04/2006
327	^M be⊓zene	< 0.10	mg/kg	19/04/2006
327	^м 12-dichloroethane	< 0.10	mg/kg	19/04/2006
327	^M trichloroethylene	< 0.10	mg/kg	19/04/2006
327	^M 12-dichloropropane	< 0.10	mg/kg	19/04/2006
327	^M dibromomethane	< 0.10	mg/kg	19/04/2006
327	[™] bromodichloromethane	< 0.10	mg/kg	, 19/04/2006
327	[™] trans-13-dichloropropene	< 0.10	mg/kg	19/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook London

Sample Type

SOIL

Sample ID:

AP2

Job:

FESB/D4991

Other ID:

1.00m

Sample No:

817279

Your Ref:

WAL 050194

Your Order:

FRAMEWORK

Received:

11/04/2006

Description

Brown sand with occasional gravel

Method	Determination	Result	Units	Date of analysis
327	^M toluene	< 0.10	mg/kg	19/04/2006
327	^м cis-13-dichloropropene	< 0.10	mg/kg	19/04/2006
327	^M 112-trichloroethane	< 0.10	mg/kg	19/04/2006
327	^M tetrachloroethylene	< 0.10	mg/kg	19/04/2006
327	^M 13-dichloropropane	< 0.10	mg/kg	19/04/2006
327	^M dibromochloromethane	< 0.10	mg/kg	19/04/2006
327	[™] 12-dibromoethane	< 0.10	mg/kg	19/04/2006
327	[™] chłorobenzene	< 0.10	mg/kg	19/04/2006
327	[™] 1112-tetrachloroethane	< 0.10	mg/kg	19/04/2006
327	^M ethylbenzene	< 0.10	mg/kg	19/04/2006
327	[™] mp-xylene	< 0.10	mg/kg	19/04/2006
327	^M o-xylene	< 0.10	mg/kg	19/04/2006
327	[™] styrene	< 0.10	mg/kg	19/04/2006
327	^M bromoform	< 0.10	mg/kg	19/04/2006
327	[™] isopropylbenzene	< 0.10	mg/kg	19/04/2006
327	[™] bromobenzene	< 0.10	mg/kg	19/04/2006
327	[™] 123-trichloropropane	< 0.10	mg/kg	19/04/2008
327	[™] 1122-tetrachloroethane	< 0.10	mg/kg	19/04/2006
327	[™] n-propylbenzene	< 0.10	mg/kg	19/04/2006
327	2-chlorotoluene	< 0.10	mg/kg	19/04/2006
327	^M 4-chlorotoluene	< 0.10	mg/kg	19/04/2006
327	135-trìmethylbenzene	< 0.10	mg/kg	19/04/2006
327	tert-butylbenzene	< 0.10	mg/kg	19/04/2006
327	[™] sec-butylbenzene	< 0.10	mg/kg	19/04/2006
327	[™] 13-dichlorobenzene	< 0,10	mg/kg	19/04/2006
327	[™] 14-dichlorobenzene	< 0.10	mg/kg	19/04/2006
327	^M p-isopropyltoluene	< 0.10	mg/kg	19/04/2006
327	^M 12-dichlorobenzene	< 0.10	mg/kg	19/04/2006
327	[™] n-butylbenzene	< 0.10	mg/kg	19/04/2006
327	12-dibromo3chloropropane	< 0.10	mg/kg	19/04/2006
327	135-trichlorobenzene	< 0.10	mg/kg	19/04/2006
327	124-trichtorobenzene	< 0.10	mg/kg	19/04/2006
327	124-trimethylbenzene	< 0.10	mg/kg	19/04/2006
327	^M hexachlorobutadìene	< 0.10	mg/kg	19/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook London

Sample Type

SOIL

Sample ID:

AP2

Job:

FESB/D4991

Other ID:

1.00m

Sample No:

817279

Your Ref:

WAL 050194

Your Order:

FRAMEWORK

Received:

11/04/2006

Description

Brown sand with occasional gravel

Method	Determination	Result	Units	Date of analysis
327	123-trichlorobenzene	< 0.10	mg/kg	19/04/2006
327	vinyl chloride	< 0.10	mg/kg	19/04/2006
322	[™] Total Phenol	< 0.50	mg/kg	18/04/2006
70	Asbestos Identification	ND		25/04/2006
70	Description of Sample*	SOIL		25/04/2006
Moisture	Moisture*	9.2	%	19/04/2006
Stones	Stones %*	15	%	19/04/2006

Comments

Site

Walbrook London

Sample Type

SOIL

Sample ID:

AP9

Job:

FESB/D4991

Other ID:

1.00m

Sample No:

817280

Your Ref:

WAL 050194

Your Order:

FRAMEWORK

Received:

11/04/2006

Description

Brown sand with some gravel

Method —-	Determination	Result	Units	Date of analysis
30C	Antimony (Total)	< 1.0	mg/kg	22/04/2006
30/30C	^M Arsenic (Total)	11	mg/kg	22/04/2006
52	^M Barium (Total)	78	mg/kg	22/04/2006
52	[™] Beryllium (Total)	0.63	mg/kg	22/04/2006
6	[™] Boron (Soluble)	2.2	mg/kg	20/04/2006
30	[™] Cadmium (Total)	< 0.50	mg/kg	22/04/2006
30	[™] Chromium (Total)	42	mg/kg	22/04/2006
30	^M Copper (Total)	43	mg/kg	22/04/2006
30	[™] Lead (Total)	140	mg/kg	22/04/2006
52	Magnesium (Total)	1700	mg/kg	22/04/2006
30C	^M Mercury (Total)	0.21	mg/kg	22/04/2006
30	[™] Nickel (Total)	33	mg/kg	22/04/2006
30C	[™] Selenium (Total)	< 0.30	mg/kg	22/04/2006
30	[™] Zinc (Total)	72	mg/kg	22/04/2008
12A	Chloride (2:1 Water Extract)*	< 0.05	g/l	20/04/2006
14	^M Cyanide (Total)	< 2.0	mġ/kg	18/04/2006
47	[™] Sulphide as S	< 5.0	mg/kg	18/04/2006
	TOC by Ignition in Oxygen\$	0.62	%	09/05/2006
20A	Fluoride as F-*	< 0.50	mg/kg	19/04/2006
	>> TPH SUITE <<			12/04/2006
317	TPH by GC (>C6-C10)	< 50	mg/kg	20/04/2006
317	TPH by GC (>C10 - C20)	< 50	mg/kg	20/04/2006
317	TPH by GC (>C20-C40)	59	mg/kg	20/04/2006
317	^M TPH by GC (>C6 - C40)	59	mg/kg	20/04/2006
	>> SVOC SUITE <<			12/04/2006
316	^M phenol	< 1.0	mg/kg	24/04/2006
316	2-picoline	< 1.0	mg/kg	24/04/2006
316	analine	< 1.0	mg/kg	24/04/2006
SVOC\$1	o-toluidine*	< 0.10	mg/kg	24/04/2008
316	bis(2-chloroethyl)ether	< 1.0	mg/kg	24/04/2006
316	2-chlorophenol	< 1.0	mg/kg	24/04/2006
316	1,3-dichlorobenzene	< 1.0	mg/kg	24/04/2008
316	benzyl alcohol	< 1.0	mg/kg	24/04/2006
316	M 1,4-dichlorobenzene	< 1.0	mg/kg	24/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook London

Sample Type

SOIL

Sample ID:

AP9

Job:

FESB/D4991

Other ID:

1.00m

Sample No:

817280

Your Ref:

WAL 050194

Your Order:

FRAMEWORK

Received:

11/04/2006

Description

Brown sand with some gravel

Method	Determination	Result	Units	Date of analysis
316	^M 1,2-dichlorobenzene	< 1.0	mg/kg	24/04/2006
316	bis(2-chloroisopropyl)ether	< 1.0	mg/kg	24/04/2006
316	n-nitroso-di-n-propylamine	< 1.0	mg/kg	24/04/2006
316	[™] hexachloroethane	< 1.0	mg/kg	24/04/2006
316	^M 2-methylphenol	< 1.0	mg/kg	24/04/2006
316	^M nitrobenzene	< 1.0	mg/kg	24/04/2006
316	^M 4-methylphenol	< 1.0	mg/kg	24/04/2006
316	[™] isophorone	< 1.0	mg/kg	24/04/2006
316	2,4-dimethylphenol	< 1.0	mg/kg	24/04/2006
316	асеtophenone	< 1.0	mg/kg	24/04/2006
316	2-nitropheno!	< 1.0	mg/kg	24/04/2006
316	bis(2-chloroethoxy)methane	< 1.0	mg/kg	24/04/2006
316	^M 2,4-dichlorophenol	< 1.0	mg/kg	24/04/2006
316	1,2,4-trichlorobenzene	< 1.0	mg/kg	24/04/2006
316	парhthalene	< 1.0	mg/kg	24/04/2006
316	[™] hexachlorobutadiene	< 1.0	mg/kg	24/04/2006
316	^M 4-chloro-3-methylphenol	< 1.0	mg/kg	24/04/2006
316	^M 2-methylnaphthalene	< 1.0	mg/kg	24/04/2006
316	n-nitrosopiperidine	< 1.0	mg/kg	24/04/2006
316	2,4,6-trichlorophenol	< 1.0	mg/kg	24/04/2006
316	^M 2,4,5-trichlorophenol	< 1.0	mg/kg	24/04/2006
316	^M 2-chloronaphthalene	< 1.0	mg/kg	24/04/2006
316	^M dimethylphthalate	< 1.0	mg/kg	24/04/2006
316	^M 2,6-dinitrotoluene	< 1.0	mg/kg	24/04/2006
316	benzoic acid	< 1.0	mg/kg	24/04/2006
316	^M acenaphthylene	< 1.0	mg/kg	24/04/2008
316	[™] acenaphthene	< 1.0	mg/kg	24/04/2006
316	^M 2,4-dinitrotoluene	< 1.0	mg/kg	24/04/2006
316	^M diethylphthalate	< 1.0	mg/kg	24/04/2006
316	^M 4-nitrophenol	< 1.0	mg/kg	24/04/2006
316	^M 4-chlorophenyl-phenylether	< 1.0	mg/kg	24/04/2006
316	[™] fluorene	< 1.0	mg/kg	24/04/2006
316	carbazole	< 1.0	mg/kg	24/04/2006
316	n-nitrosodiphenylamine	< 1.0	mg/kg	24/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook London

Sample Type

Sample ID:

Job: FESB/D4991

Other ID:

1.00m

AP9

Sample No: 817280

Your Ref:

WAL 050194

Your Order:

FRAMEWORK

SOIL

Received:

11/04/2006

Description

Brown sand with some gravel

Method	Determination	Result	Units	Date of analysis
316	^M 4-bromophenyl-phenylether	< 1.0	mg/kg	24/04/2006
316	4-chloroaniline	< 1.0	mg/kg	24/04/2006
316	^M hexachlorobenzene	< 1.0	mg/kg	24/04/2006
316	[™] pentachlorophenol	< 1.0	mg/kg	24/04/2006
316	26-dichlorophenol	< 1.0	mg/kg	24/04/2006
316	[™] phenanthrene	< 1.0	mg/kg	24/04/2006
316	[™] anthracene	< 1.0	mg/kg	24/04/2006
316	^M di-n-butylphthalate	< 1.0	mg/kg	24/04/2006
316	[™] fluoranthene	< 1.0	mg/kg	24/04/2006
316	n-nitrosodibutylamine	< 1.0	mg/kg	24/04/2006
316	[™] pyrene	< 1.0	mg/kg	24/04/2006
316	^M butylbenzylphthalate	< 1.0	mg/kg	24/04/2006
316	[™] benzo(a)anthracene	< 1.0	mg/kg	24/04/2006
316	[™] chrysene	< 1.0	mg/kg	24/04/2006
316	1245-tetrachlorobenzene	< 1.0	mg/kg	24/04/2006
316	^M bis(2-ethylhexyl)phthalate	< 1.0	mg/kg	24/04/2006
316	^M di-n-octylphthalate	< 1.0	mg/kg	24/04/2006
316	hexachlorocyclopentadien	< 1.0	mg/kg	24/04/2008
316	benzo(b)fluoranthene	< 1.0	mg/kg	24/04/2006
316	benzo(k)fluoranthene	< 1.0	mg/kg	24/04/2006
316	^M benzo(a)pyrene	< 1.0	mg/kg	24/04/2006
316	indeno(123-cd)pyrene	< 1.0	mg/kg	24/04/2006
316	dibenzo(ah)anthracene	< 1.0	mg/kg	24/04/2006
316	benzo(ghi)perylene	< 1.0	mg/kg	24/04/2006
316	2-nitroaniline	< 1.0	mg/kg	24/04/2008
316	3-nitroaniline	< 1.0	mg/kg	24/04/2006
316	^M Dibenzofuran	< 1.0	mg/kg	24/04/2006
316	pentachlorobenzene	< 1.0	mg/kg	24/04/2006
316	12-diphenylhydrazine	< 1.0	mg/kg	24/04/2006
316	2-fluorophenol	84	%	24/04/2006
316	2-naphthylamine	< 1.0	mg/kg	24/04/2006
316	phenol-d6	75	%	24/04/2006
316	nitrobenzene-d5	63	%	24/04/2006
316	2346-tetrachlorophenol	< 1.0	mg/kg	24/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook London

Sample Type

SOIL

Sample ID:

AP9

Job:

FESB/D4991

Other ID:

1.00m

Sample No:

817280

Your Ref:

WAL 050194

Your Order:

FRAMEWORK

Received:

11/04/2006

Description

Brown sand with some grave!

Method	Determination	Result	Units	Date of analysis
316	2-fluorobiphenyl	72	%	24/04/2006
316	2,4,6-tribromophenol	52	%	24/04/2006
316	terphenyl-d14	73	%	24/04/2008
316	4-nitroaniline	< 1.0	mg/kg	24/04/2006
316	2-methyl-46-dinitropheno	< 1.0	mg/kg	24/04/2006
316	diphenylamine	< 1.0	mg/kg	24/04/2006
316	phenacetin	< 1.0	mg/kg	24/04/2006
316	4-aminobiphenyl	< 1.0	mg/kg	24/04/2006
316	benzidine	< 1.0	mg/kg	24/04/2006
316	dimethylaminoazobenzene	< 1.0	mg/kg	24/04/2006
316	n-nitrosodimethylamine	< 1.0	mg/kg	24/04/2006
316	33-dichlorobenzidine	< 1.0	mg/kg	24/04/2006
316	7,12-dimethylbenz(a)anth	< 1.0	mg/kg	24/04/2006
316	3-methylcholanthrene	< 1.0	mg/kg	24/04/2006
	M >> BTEX SUITE <<	•		24/04/2006
	M >> VOC'S SUITE <<			12/04/2006
327	^M 11-dichloroethene	< 0.10	mg/kg	19/04/2006
327	^M dichloromethane	< 0.10	mg/kg	19/04/2006
327	^M trans-12-dichloroethene	< 0.10	mg/kg	19/04/2006
327	^M 11-dichloroethane	< 0.10	mg/kg	19/04/2006
327	^M 2,2-dichloropropane	< 0.10	mg/kg	19/04/2006
327	^M cis-12-dichloroethene	< 0.10	mg/kg	19/04/2006
327	[™] bromochloromethane	< 0.10	mg/kg	19/04/2006
327	^M chloroform	< 0.10	mg/kg	19/04/2006
327	^M 111-trichloroethane	< 0.10	mg/kg	19/04/2006
327	^M carbon tetrachloride	< 0.10	mg/kg	19/04/2006
327	^M 1,1-dichloropropene	< 0.10	m g/kg	19/04/2006
327	^M benzene	< 0.10	mg/kg	19/04/2006
327	^M 12-dichloroethane	< 0.10	mg/kg	19/04/2008
327	^M trichloroethylene	< 0.10	mg/kg	19/04/2006
327	^M 12-dichloropropane	< 0.10	mg/kg	19/04/2006
327	^M dibromomethane	< 0.10	mg/kg	19/04/2006
327	^M bromodichloromethane	< 0.10	mg/kg	19/04/2006
27	^M trans-13-dichloropropene	< 0.10	mg/kg	19/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook London

Sample Type

SOIL

Sample ID:

AP9

Job:

FESB/D4991

Other ID: Your Ref: 1.00m

Sample No:

817280

Received:

WAL 050194

Your Order:

FRAMEWORK

11/04/2006

Description

Brown sand with some gravel

Method	Determination	Result	Units	Date of analysis
327	^M toluene	< 0.10	mg/kg	19/04/2006
327	^M cis-13-dichloropropene	< 0.10	mg/kg	19/04/2006
327	^M 112-trichloroethane	< 0.10	mg/kg	19/04/2006
327	^M tetrachloroethylene	< 0.10	mg/kg	19/04/2006
327	^M 13-dichloropropane	< 0.10	mg/kg	19/04/2006
327	^M dibromochloromethane	< 0.10	mg/kg	19/04/2006
327	^M 12-dibromoethane	< 0.10	mg/kg	19/04/2006
327	^M chlorobenzene	< 0.10	mg/kg	19/04/2006
327	^M 1112-tetrachloroethane	< 0.10	mg/kg	19/04/2006
327	^M ethylbenzene	< 0.10	mg/kg	19/04/2006
327	^M mp-xylene	< 0.10	mg/kg	19/04/2006
327	^M o-xylene	< 0.10	mg/kg	19/04/2006
327	[™] styrene	< 0.10	mg/kg	19/04/2006
327	^M bromoform	< 0.10	mg/kg	19/04/2006
327	[™] isopropylbenzene	< 0.10	mg/kg	19/04/2006
327	[™] bromobenzene	< 0.10	mg/kg	19/04/2006
327	^M 123-trichloropropane	< 0.10	mg/kg	19/04/2006
327	^M 1122-tetrachloroethane	< 0.10	mg/kg	19/04/2006
327	[™] n-propylbenzene	< 0.10	mg/kg	19/04/2006
327	2-chlorotoluene	< 0.10	mg/kg	19/04/2006
327	^M 4-chiorotoluene	< 0.10	mg/kg	19/04/2006
327	135-trimethylbenzene	< 0.10	mg/kg	19/04/2006
327	tert-buty/benzene	< 0.10	mg/kg	19/04/2006
327	[™] sec-butylbenzene	< 0.10	mg/kg	19/04/2006
327	^M 13-dichlorobenze ne	< 0.10	mg/kg	19/04/2006
327	^M 14-dichlorobenzene	< 0.10	mg/kg	19/04/2006
327	[™] p-isopropyltoluene	< 0.10	mg/kg	19/04/2006
327	[™] 12-dichlorobenzene	< 0.10	mg/kg	19/04/2006
327	^м п-butylbenzene	< 0.10	mg/kg	19/04/2006
327	12-dibromo3chloropropane	< 0.10	mg/kg	19/04/2006
327	135-trichlorobenzene	< 0.10	mg/kg	19/04/2006
327	124-trichlorobenzene	< 0.10	mg/kg	19/04/2006
327	124-trimethylbenzene	< 0.10	mg/kg	19/04/2006
327	^M hexachlorobutadiene	< 0.10	mg/kg	19/04/2006

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom

Site

Walbrook London

Sample Type

SOIL

Sample ID:

AP9

Job:

FESB/D4991

Other ID:

1.00m

Sample No:

817280

Your Ref:

WAL 050194

Your Order:

FRAMEWORK

Received:

11/04/2006

Description

Brown sand with some gravel

Method	Determination	Result	Units	Date of analysis
327	123-trichlorobenzene	< 0.10	mg/kg	19/04/2006
327	vinyl chloride	< 0.10	mg/kg	19/04/2006
322	[™] Total Phenol	< 0.50	mg/kg	18/04/2006
70	Asbestos Identification	ND		25/04/2006
70	Description of Sample*	SOIL		25/04/2006
Moisture	Moisture*	4.5	%	19/04/2006
Stones	Stones %*	21	%	19/04/2006
Commonto				

Comments

Page 14 of 14

Synopses of Analytical Methods

Reference	Method Text
327	Based on USEPA methodology 8260. The VOC content of land samples is determined by GC-MS using a headspace analyser. This analysis is carried out on an as received portion of sample.
14	The cyanides in the sample are determined in two stages. Initially hydrogen cyanide is liberated at pH 4 into a fixing reagent. Then, the complex cyanides are dissociated and liberated from the same sample using orthophosphoric acid under the same conditions. The liberated HCN from both steps is absorbed in separate sodium hydroxide solutions and determined colorimetrically using a discrete autoanalyser.
30	Metals are extracted from land samples by boiling with hydrochloric/nitric acids (3:1 ratio). The measurement of metal concentrations is determined directly on an ICP-OES at defined wavelengths.
30/30C	Metals are extracted from land samples by boiling with hydrochloric/nitric acids (3:1 ratio). For the measurement of metal concentrations is determined on an ICP-OES at defined wavelengths. Where a result is 25mg/kg or above results are obtained directly. Otherwise results are obtained via hydride generation.
30C	Metals are extracted from land samples by boiling with hydrochloric/nitric acid (3:1 ratio). The measurement of metal concentrations is determined by means of hydride generation / atomic vapour on an ICP-OES at defined wavelengths
317	Hydrocarbons are extracted from land samples using pentane. The samples are shaken mechanically, sonicated, before being centrifuged. After separation an aliquot of the pentane layer is transferred to a separate vial and spiked with internal standard. Hydrocarbon content of this extract is then determined by GC- flame ionisation (FID). This analysis is carried out on an as received portion of sample.
322	Soil Sample is collected directly into a pre-weighed sample jar containing extraction solvent. On reaching the laboratory the sample is shaken for 30 minutes. A portion of sample is filtered using a gas tight syringe and a 0.45 micron syringe filter. This filtrate is analysed for phenols by reverse phase HPLC with electrochemical detection.
47	The sulphide content of land samples is determined via extraction with dilute sulphuric acid and steam distillation into zinc acetate solution and sodium hydroxide. The distillate is then titrated against sodium thiosulphate solution using iodine indicator.
3	Boron is extracted from land samples using boiling deionised water followed by vacuum filtration. The measurement of boron in the filtrate is then determined directly by ICP-OES at the defined wavelength.

Soil Analysis

FESB/D4991

Walbrook London

Your Reference:- WAL 050194

Your Order:- FRAMEWORK

CAS Number Sample Ref			Limit Of	8172	81			
Detname	Method	Units	Detection	AQC	+3s	+2s	-2s	-3s
Antimony (Total)	30C	mg/kg	1.0000	N/S				
Arsenic (Total)	30/30C	mg/kg	1.0000	20	24.5000	22.6000	15.0000	13.1000
Barium (Total)	52	mg/kg	0.5000	N/S			10.0000	13.1000
Beryllium (Total)	52	mg/kg	0.2000	N/S				
Boron (Soluble)	6	mg/kg	0.2500	2.9	3.1400	2.9000	1.9400	1.7000
Cadmium (Total)	30	mg/kg	0.5000	6.2	7.7700	7.4200	6.0200	5.6700
Chromium (Total)	30	mg/kg	5.0000	70	88.6900	83.9200	64.8400	60.0700
Copper (Total)	30	mg/kg	2.5000	1200	1374.0000	1318.0000	1094.0000	1038.0000
Lead (Total)	30	mg/kg	5.0000	730	959.8000	905.9000	690.3000	636.4000
Magnesium (Total)	52	mg/kg	10.0000	N/S			000.0000	000.4000
Mercury (Total)	30C	mg/kg	0.2000	8.4	10.1140	9.3340	6,2140	5.4340
Nickel (Total)	30	mg/kg	2.5000	150	181.5000	172.3000	135,5000	126.3000
Selenium (Total)	30C	mg/kg	0.3000	7.9	9.5310	8.7980	5.8660	5.1330
Zinc (Total)	30	mg/kg	5.0000	1100	1350.0000	1284.0000	1020.0000	954.0000
Chloride (2:1 Water Extract)*	12A	g/l	0.0500	N/S				00110000
Cyanide (Total)	14	mg/kg	2.0000	87	113.1350	104.4320	69.6200	60.9170
Sulphide as S	47	mg/kg	5.0000	N/S				55.5176
Fluoride as F-*	20A	mg/kg	0.5000	N/S				
>> TPH SUITE <<				N/S				
TPH by GC (>C6-C10)	317	mg/kg	50.0000	N/S				
TPH by GC (>C10 - C20)	317	mg/kg	50.0000	N/S				
TPH by GC (>C20-C40)	317	mg/kg	50,0000	N/S				
TPH by GC (>C6 - C40)	317	mg/kg	50.0000	5400	6291.0000	5807.0000	3871.0000	3307 0000
>> SVOC SUITE <<				N/S		0007.0000	3071.0000	3387.0000
phenol	316	mg/kg	1.0000	N/S				
2-picoline	316	mg/kg	1.0000	N/S				
o-toluidine*	SVOCS1	mg/kg	0.1000	N/S				
analine	316	mg/kg	1.0000	N/S				
bis(2-chloroethyl)ether	316	mg/kg	1.0000	N/S				
2-chlorophenol	316	mg/kg	1.0000	N/S				
1,3-dichlorobenzene	316	mg/kg	1.0000	N/S				
penzyl alcohol	316	mg/kg	1.0000	N/S				
1,4-dichlorobenzene 1idlands r House, 80 Lockhurst I a	316	mg/kg	1.0000 0)24 7658 4800	N/S			Evening Etilegen	

STL N

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom Fax +44 (0)24 7658 4848 info@stl-ltd.com

Soil Analysis

		•						
1,2-dichlorobenzene	316	mg/kg	1.0000	N/S				
bis(2-chloroisopropyl)ether	316	mg/kg	1.0000	N/S				
n-nitroso-di-n-propylamine	316	mg/kg	1.0000	N/S				
hexachloroethane	316	mg/kg	1.0000	N/S				
2-methylphenol	316	mg/kg	1.0000	N/S				
nitrobenzene	316	mg/kg	1.0000	N/S				
4-methylphenol	316	mg/kg	1.0000	N/S				
isophorone	316	mg/kg	1.0000	N/S				
2,4-dimethylphenol	316	mg/kg	1.0000	N/S				
acetophenone	316	mg/kg	1.0000	N/S				
2-nitrophenol	316	mg/kg	1.0000	N/S				
bis(2-chloroethoxy)methane	316	mg/kg	1.0000	N/S				
2,4-dichlorophenol	316	mg/kg	1.0000	N/S				
1,2,4-trichlorobenzene	316	mg/kg	1.0000	N/S				
naphthalene	316	mg/kg	1.0000	N/S				·
hexachlorobutadiene	316	mg/kg	1.0000	N/S				
4-chloro-3-methylphenol	3 16	mg/kg	1.0000	N/S				
2-methylnaphthalene	316	mg/kg	1.0000	N/S				
n-nitrosopiperidine	316	mg/kg	1.0000	N/S				
2,4,6-trichlorophenol	316	mg/kg	1.0000	N/S				
2,4,5-trichlorophenol	316	mg/kg	1.0000	N/S				
2-chloronaphthalene	316	mg/kg	1.0000	N/S				
dimethylphthalate	316	mg/kg	1.0000	N/S				
2,6-dinitrotoluene	316	mg/kg	1.0000	N/S				
benzoic acid	316	mg/kg	1.0000	N/S				
acenaphthylene	316	mg/kg	1.0000	N/S				
acenaphthene	316	mg/kg	1.0000	N/S				
2,4-dinitrotoluene	316	mg/kg	1.0000	N/S				
diethylphthalate	316	mg/kg	1.0000	N/S				
4-nitrophenol	316	mg/kg	1.0000	N/S				
4-chlorophenyl-phenylether	316	mg/kg	1.0000	N/S				
fluorene	316	mg/kg	1.0000	N/S				
carbazole	316	mg/kg	1.0000	N/S				
n-nitrosodiphenylamine	316	mg/kg	1.0000	N/S				
4-bromopheлyl-phenylether	316	mg/kg	1.0000	N/S				
hexachlorobenzene	316	mg/kg	1.0000	N/S				
4-chloroaniline	316	mg/kg	1.0000	23	35.1000	31.8000	18.6000	15.3000
pentachlorophenol	316	mg/kg	1.0000	N/S				
26-dichlorophenol	316	mg/kg	1.0000	N/S				
phenanthrene Midlands	316		1. 0000 24 7658 4800	N/S			Evalu Caganh	 \
ner House, 80 Lockhurst La entry CV6 5PZ United Kingo		Fax +44 (0)2	24 7658 4848			***	BUSINESS	

info@stl-ltd.com

Coventry CV6 5PZ United Kingdom

Soil Analysis

anthracene 316 mg/kg 1.00 di-n-butylphthalate 316 mg/kg 1.00 fluoranthene 316 mg/kg 1.00 n-nitrosodibutylamine 316 mg/kg 1.00 pyrene 316 mg/kg 1.00 butylbenzylphthalate 316 mg/kg 1.00 benzo(a)anthracene 316 mg/kg 1.00 chrysene 316 mg/kg 1.00 1245-tetrachlorobenzene 316 mg/kg 1.00	0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S
fluoranthene 316 mg/kg 1.00 n-nitrosodibutylamine 316 mg/kg 1.00 pyrene 316 mg/kg 1.00 butylbenzylphthalate 316 mg/kg 1.00 benzo(a)anthracene 316 mg/kg 1.00 chrysene 316 mg/kg 1.00	000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S
n-nitrosodibutylamine 316 mg/kg 1.00 pyrene 316 mg/kg 1.00 butylbenzylphthalate 316 mg/kg 1.00 benzo(a)anthracene 316 mg/kg 1.00 chrysene 316 mg/kg 1.00	000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S
pyrene 316 mg/kg 1.00 butylbenzylphthalate 316 mg/kg 1.00 benzo(a)anthracene 316 mg/kg 1.00 chrysene 316 mg/kg 1.00	000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S
butylbenzylphthalate 316 mg/kg 1.00 benzo(a)anthracene 316 mg/kg 1.00 chrysene 316 mg/kg 1.00	0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S
benzo(a)anthracene 316 mg/kg 1.00 chrysene 316 mg/kg 1.00	0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S 0000 N/S
chrysene 316 mg/kg 1.00	000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S
	000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S
1245-tetrachlorobenzene 316 mg/kg 1.00	000 N/S 000 N/S 000 N/S 000 N/S 000 N/S 000 N/S
	000 N/S 000 N/S 000 N/S 000 N/S
bis(2-ethylhexyl)phthalate 316 mg/kg 1.00	000 N/S 000 N/S 000 N/S 000 N/S
di-n-octylphthalate 316 mg/kg 1.00	000 N/S 000 N/S 000 N/S
hexachlorocyclopentadien 316 mg/kg 1.00	000 N/S
benzo(b)fluoranthene 316 mg/kg 1.00	000 N/S
benzo(k)fluoranthene 316 mg/kg 1.00	
benzo(a)pyrene 316 mg/kg 1.00	00 N/S
indeno(123-cd)pyrene 316 mg/kg 1.00	
dibenzo(ah)anthracene 316 mg/kg 1.00	00 N/S
benzo(ghi)perylene 316 mg/kg 1.00	00 N/S
2-nitroaniline 316 mg/kg 1.00	00 N/S
3-nitroaniline 316 mg/kg 1.00	00 N/S
Dibenzofuran 316 mg/kg 1.00	00 N/S
pentachlorobenzene 316 mg/kg 1.000	00 N/S
12-diphenylhydrazine 316 mg/kg 1.000	00 N/S
2-fluorophenol 316 % 1.000	00 N/S
2-naphthylamine 316 mg/kg 1.000	00 N/S
phenol-d6 316 % 1.000	00 N/S
nitrobenzene-d5 316 % 1.000	00 N/S
2346-tetrachlorophenol 316 mg/kg 1.000	00 N/s
2-fluorobiphenyl 316 % 1.000	00 N/S
2,4,6-tribromophenol 316 % 1.000	00 N/S
terphenyl-d14 316 % 1.000	00 N/S
4-nitroaniline 316 mg/kg 1.000	00 N/S
2-methyl-46-dinitropheno 316 mg/kg 1.000	00 N/S
diphenylamine 316 mg/kg 1.000	00 N/S
phenacetin 316 mg/kg 1.000	00 N/S
4-aminobiphenyl 316 mg/kg 1.000	00 N/S
benzidine 316 mg/kg 1.000	00 N/S
dimethylaminoazobenzene 316 mg/kg 1.000	00 N/S
n-nitrosodimethylamine 316 mg/kg 1.000	00 N/S
33-dichlorobenzidine 316 mg/kg 1.000 Midlands Tel +44 (0)24 7658 ner House, 80 Lockhurst Lane. Fax +44 (0)24 7658	8 4800

STL

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom Fax +44 (0)24 7658 4848

Soil Analysis

7,12-dimethylbenz(a)anth	316	mg/kg	1.0000	N/S				
3-methylcholanthrene	316	mg/kg	1.0000	N/S				
>> BTEX SUITE <<				N/S				
>> VOC'S SUITE <<				N/S				
11-dichloroethene	327	mg/kg	0.1000	N/S				
dichloromethane	327	mg/kg	0.1000	N/S				
trans-12-dichloroethene	327	mg/kg	0.1000	N/S				
11-dichloroethane	327	mg/kg	0.1000	N/S				
2,2-dichloropropane	327	mg/kg	0.1000	N/S				
cis-12-dichloroethene	327	mg/kg	0.1000	N/S				
bromochloromethane	327	mg/kg	0.1000	N/S				
chloroform	327	mg/kg	0.1000	N/S				
111-trichloroethane	327	mg/kg	0.1000	N/S				
carbon tetrachloride	327	mg/kg	0.1000	N/S				
1,1-dichloropropene	327	mg/kg	0.1000	N/S				
benzene	327	mg/kg	0.1000	0.92	1.2050	- 1.0910	0.6350	0.5210
12-dichloroethane	327	mg/kg	0.1000	N/S			0,000	0.0210
trichloroethylene	327	mg/kg	0.1000	0.85	1.0430	0.9460	0.5580	0.4610
12-dichloropropane	327	mg/kg	0.1000	N/S				0.1010
dibromomethane	327	mg/kg	0.1000	N/S				
bromodichloromethane	327	mg/kg	0.1000	N/S				
trans-13-dichloropropene	327	mg/kg	0.1000	N/S				
toluene	327	mg/kg	0.1000	0.83	1.0410	0.9380	0.5260	0.4230
cis-13-dichloropropene	327	mg/kg	0.1000	N/S				4.1200
112-trichloroethane	327	mg/kg	0.1000	N/S				
tetrachloroethylene	327	mg/kg	0.1000	N/S				
13-dichloropropane	327	mg/kg	0.1000	N/S				
dibromochloromethane	327	mg/kg	0.1000	N/S				
12-dibromoethane	327	mg/kg	0.1000	N/S				
chlorobenzene	327	mg/kg	0.1000	0.86	1.2880	1.1410	0.5530	0.4060
1112-tetrachloroethane	327	mg/kg	0.1000	N/S				
ethylbenzene	327	mg/kg	0.1000	0.87	1.1930	1.0600	0.5280	0.3950
mp-xylene	327	mg/kg	0.1000	N/S				
o-xylene	327	mg/kg	0.1000	0.82	1.1900	1.0530	0.5050	0.3680
styrene	327	mg/kg	0.1000	N/S				
bromoform	327	mg/kg	0.1000	N/S				
isopropylbenzene	327	mg/kg	0.1000	N/S				
bromobenzene	327	mg/kg	0.1000	N/S				
123-trichloropropane	327	mg/kg	0.1000	N/S				-
1122-tetrachloroethane	327	mg/kg	0.1000	N/S				
Midlands		T-1 .44.46	NO4 7650 400					

STL Midlands

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom Tel +44 (0)24 7658 4800

Fax +44 (0)24 7658 4848

info@stl-ltd.com

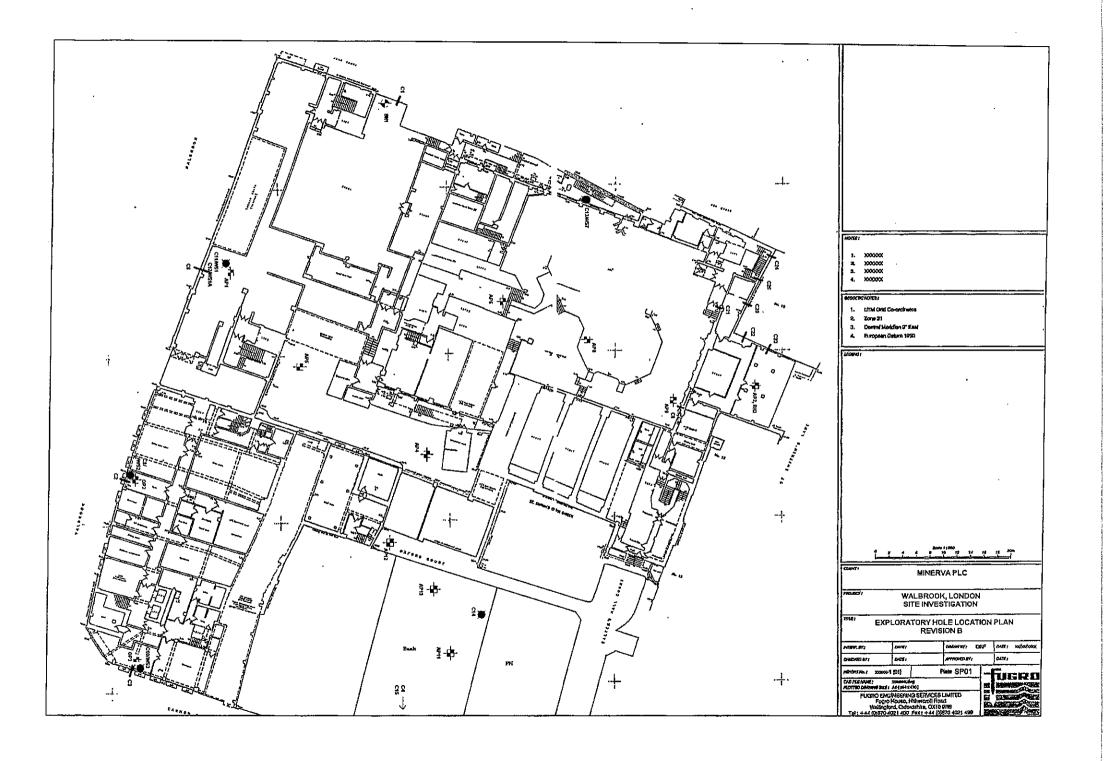
STL

Leaders in Environmental Testing

Soil Analysis

n-propylbenzene	327	mg/kg	0.1000	N/S
2-chlorotoluene	327	mg/kg	0.1000	N/S
4-chlorotoluene	327	mg/kg	0.1000	N/S
135-trimethylbenzene	327	mg/kg	0.1000	N/S
tert-butylbenzene	327	mg/kg	0.1000	N/S
sec-butylbenzene	327	mg/kg	0.1000	N/S
13-dichlorobenzene	327	mg/kg	0.1000	N/S
14-dichlorobenzene	327	mg/kg	0.1000	N/S
p-isopropyltoluene	327	mg/kg	0.1000	N/S
12-dichlorobenzene	327	mg/kg [°]	0.1000	N/S
n-butylbenzene	327	mg/kg	0.1000	N/S
12-dibromo3chloropropane	327	mg/kg	0.1000	N/S
135-trichlorobenzene	327	mg/kg	0.1000	N/S
124-trichlorobenzene	327	mg/kg	0.1000	N/S
124-trimethylbenzene	327	mg/kg	0.1000	N/S
hexachlorobutadiene	327	mg/kg	0.1000	N/S
123-trichlorobenzene	327	mg/kg	0.1000	N/S
vinyl chloride	327	mg/kg	0.1000	N/S
Total Phenol	322	mg/kg	0.5000	N/S
Asbestos Identification	70		0.1000	N/S
Description of Sample*	70		0.0000	N/S

Rayner House, 80 Lockhurst Lane, Coventry CV6 5PZ United Kingdom


MINERVA PLC WALBROOK, LONDON - SITE INVESTIGATION

APPENDIX E Drawings

Site Location Plan

Figure SP1

MINERVA PLC WALBROOK, LONDON - SITE INVESTIGATION

APPENDIX F Photographs

Rotary Core Photographs
Trail Pit Photographs

BH1 Box 1

BH1 Box 2

		Input by KD	Date 10/5/06	Checked by	Date		
- Tuc	RO		WALB	Contract No WAL050194			
	\approx					Figure No	

BH1 Box 3

BH1 Box 4

		Input by KD	Date 10/5/06	Checked by	Date		
TUGRO			WALB	Contract No WAL050194			
						Figure No	

BH1 Box 5

BH1 Box 6

	Input by KD	Date 10/5/06	Checked by	Date		
TUGRO					Contract No WAL050194	
					Figure No	

BH1 Box 7

BH1 Box 8

		Input by KD	Date 10/5/06	Checked by	Date		
TUGRO			WALB	Contract No WAL050194			
						Figure No	

BH1 Box 9

BH1 Box 10

		Input by KD	Date 10/5/06	Checked by	Date		
TUGRO			WALB	Contract No WAL050194			
						Figure No	

BH1 Box 11

BH1 Box 12

		Input by KD	Date 10/5/06	Checked by	Date		
TUGRO			WALB	Contract No WAL050194			
						Figure No	

BH1 Box 13

BH3 Box 1

		Input by KD	Date 10/5/06	Checked by	Date		
TUGRO			WALB	Contract No WAL050194			
						Figure No	

BH3 Box 2

BH3 Box 3

		Input by KD	Date 10/5/06	Checked by	Date		
- Tuc	RO		WALB	Contract No WAL050194			
	\approx	111125				Figure No	

BH3 Box 4

BH3 Box 5

	Input by KD	Date 10/5/06	Checked by	Date		
UGRO		WALB	Contract No WAL050194			
			Figure No			

BH3 Box 6

BH3 Box 7

		Input by KD	Date 10/5/06	Checked by	Date		
TUGRO			WALB	Contract No WAL050194			
						Figure No	

BH3 Box 8

BH3 Box 9

	Input by KD	Date 10/5/06	Checked by	Date		
TUGRO		WALE	Contract No WAL050194			
					Figure No	

BH3 Box 10

BH3 Box 11

		Input by KD	Date 10/5/06	Checked by	Date		
TUGRO			WALB	Contract No WAL050194			
						Figure No	

BH3 Box 12

BH3 Box 13

		Input by KD	Date 10/5/06	Checked by	Date		
UGRO			WALB	Contract No WAL050194			
	\approx					Figure No	

BH3 Box 14

BH3 Box 15

		Input by KD	Date 10/5/06	Checked by	Date		
TUGRO		WALBROOK				Contract No WAL050194	
						Figure No	